
Velvet Capital V2

Smart Contract Security Audit

Prepared by ShellBoxes

July 17th, 2023 -August 7th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Velvet Capital

Version 1.0

Classification Public

Scope

Repository Commit Hash

https://github.com/Velvet-Capital/
protocol-v2-public

a7a968ccd39ffedcd372717cd41ce8e155272d2c

Re-Audit

Repository Commit Hash

https://github.com/Velvet-Capital/
protocol-v2-public

32452f2cff4eae008c59a376952b6d9d21ffc202

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About Velvet Capital . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 10

SHB.1 Potential Over-Minting of TokensDue toUncheckedDepositedAmount . . 10

SHB.2 StreamingFeeCheckCanCause aDenial of Service 13

SHB.3 Incorrect TokenPrice Calculation Leading to Denial of Service 15

SHB.4 Inaccuracy in LP TokenPrice CalculationDue toDecimalMismatch 20

SHB.5 Potential Loss of Index TokensDue to Lack of SwapResult Update 21

SHB.6 Misevaluation of User’s Investments in LP Tokens 24

SHB.7 Potential Portfolio ImbalanceDue to OffChain Swaps 27

SHB.8 Bypass ofWithdrawal CooldownPeriodRestriction 30

SHB.9 Flaw in ShareMinting Leading to Potential FundMisappropriation 33

SHB.10 Unfair Distribution of RewardsDue to Timing of claimTokens Function Calls 35

SHB.11 GriefingAttack inWithdrawal Process . 36

SHB.12 Hard-codedSlippage Leading to Potential Fund Freeze 38

SHB.13 Potential SandwichAttackDue to Chainlink Oracle Failure 39

SHB.14 Lack of FreshnessCheck for Chainlink Price FeedData 42

SHB.15 Precision Loss in Price Calculation Function 45

SHB.16 MismatchBetween_tokenAmount andbuyAmountsArrayCanLead toUn-

invested Funds . 46

SHB.17 Unchecked Transfer Return Value . 49

SHB.18 MissingArray Length Check . 51

SHB.19 MissingMaximumAmount for User Supplied Slippage 53

SHB.20 Potential Out of Gas ExceptionDue to Long _tokensArray 55

SHB.21 Potential Failure of Off-Chain Investment Due toDisabled Tokens 58

SHB.22 Potential UnrestrictedWithdrawalsDuring PauseState 60

3

SHB.23 Precision LossWhenDividingOdd Integers by Two 61

SHB.24 Lack of Cross-Contract Reentrancy Protection 63

SHB.25 Off-Chain Investment FailureDue toNon-ZeroProtocol Fees 64

4 Best Practices 66

BP.1 RemoveUnnecessary Initializations . 66

BP.2 Ommit Unnecessary Approval of Contract to Its OwnAddress 67

BP.3 Unnecessary Use of SafeMath&SafeMathUpgradeable Libraries 67

BP.4 RemoveUnused Ether Call . 68

BP.5 Redundant External Call in OffChainIndexSwapContract 69

BP.6 Inefficient Loop in _swapTokenToTokens Function 70

BP.7 Redundant Check inWeight Calculation . 71

BP.8 RemoveUnused Variables andEvents . 71

5 Tests 73

6 Conclusion 109

7 Scope Files 110

7.1 Audit . 110

7.2 Re-Audit . 112

8 Disclaimer 115

4

1 Introduction

Velvet Capital engaged ShellBoxes to conduct a security assessment on the Velvet Capital

V2 beginning on July 17th, 2023 and ending August 7th, 2023. In this report, we detail our

methodical approach to evaluate potential security issues associated with the implemen-

tationof smart contracts, by exposingpossible semantic discrepanciesbetween thesmart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About Velvet Capital

Velvet Capital is a DeFi protocol that helps people & institutions create tokenized index

funds, portfolios & other financial products with additional yield. The protocol provides all

the necessary infrastructure for financial product development being integrated with

AMMs, Lending protocols and other DeFi primitives to give users a diverse asset

management toolkit.

Issuer Velvet Capital

Website https://www.velvet.capital/

Type Solidity Smart Contract

Documentation Velvet Capital Docs

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

5

https://www.velvet.capital/
https://docs.velvet.capital/

contracts and can quickly detect code that does not complywith security best practices.

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

− Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

− Impact quantifies the technical and economic costs of a successful attack.

− Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
p
a
c
t High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview

2.1 Summary

The following isasynopsisofourconclusions fromouranalysisof theVelvetCapitalV2 im-

plementation. During the first part of ouraudit,weexamine thesmart contract sourcecode

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

Throughout the audit, the Velvet Capital team demonstrated commendable professional-

ismandcommitment. Their responsivenessandcomprehensivedocumentationgreatly fa-

cilitated the process. Notably, they placed a high emphasis on security, promptly address-

ingandrectifying themajorityof the identified issues. Ingeneral, thesesmartcontractsare

well-designedandconstructed, but their implementationmightbe improvedbyaddressing

thediscovered flaws,which include 2critical-severity, 6high-severity, 8medium-severity,

7 low-severity, 2 informational-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Potential Over-Minting of Tokens Due to

UncheckedDepositedAmount

CRITICAL Fixed

SHB.2. StreamingFee Check Can Cause a Denial of

Service

CRITICAL Fixed

SHB.3. Incorrect Token Price Calculation Leading to

Denial of Service

HIGH Fixed

SHB.4. Inaccuracy in LP Token Price Calculation Due

toDecimalMismatch

HIGH Fixed

7

SHB.5. Potential Loss of Index Tokens Due to Lack of

SwapResult Update

HIGH Fixed

SHB.6. Misevaluation of User’s Investments in LP To-

kens

HIGH Fixed

SHB.7. Potential Portfolio Imbalance Due to OffChain

Swaps

HIGH Fixed

SHB.8. Bypass of Withdrawal Cooldown Period Re-

striction

HIGH Fixed

SHB.9. FlawinShareMintingLeadingtoPotentialFund

Misappropriation

MEDIUM Mitigated

SHB.10. Unfair Distribution of Rewards Due to Timing

of claimTokens Function Calls

MEDIUM Acknowledged

SHB.11. Griefing Attack inWithdrawal Process MEDIUM Fixed

SHB.12. Hard-coded Slippage Leading to Potential

Fund Freeze

MEDIUM Acknowledged

SHB.13. Potential Sandwich Attack Due to Chainlink

Oracle Failure

MEDIUM Fixed

SHB.14. Lack of Freshness Check for Chainlink Price

FeedData

MEDIUM Fixed

SHB.15. Precision Loss in Price Calculation Function MEDIUM Fixed

SHB.16. Mismatch Between _tokenAmount and

buyAmounts Array Can Lead toUninvested Funds

MEDIUM Fixed

SHB.17. Unchecked Transfer Return Value LOW Fixed

SHB.18. MissingArray Length Check LOW Fixed

SHB.19. Missing Maximum Amount for User Supplied

Slippage

LOW Fixed

8

SHB.20. Potential Out of Gas Exception Due to Long

_tokensArray

LOW Fixed

SHB.21. Potential Failure of Off-Chain Investment Due

toDisabled Tokens

LOW Fixed

SHB.22. Potential Unrestricted Withdrawals During

PauseState

LOW Fixed

SHB.23. PrecisionLossWhenDividingOdd Integersby

Two

LOW Fixed

SHB.24. Lack of Cross-Contract Reentrancy Protec-

tion

INFORMATIONAL Fixed

SHB.25. Off-Chain Investment Failure Due to Non-

ZeroProtocol Fees

INFORMATIONAL Fixed

9

3 FindingDetails

SHB.1 Potential Over-Minting of Tokens Due to Unchecked

DepositedAmount

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The contract has an issue in its swapOffChainTokens function where it does not check for

theactualdepositedamountofunderlyingtokensinaliquiditypoolandthereturnedamount

to the user. In the swapOffChainTokens function, the user can input arbitrary buyAmounts,

so they can make it appear as if they are depositing a large amount into the vault, but only

a small portion of it will actually go to the vault. The majority will be returned to them as

leftovers. Thiscan lead to theuserhavingmintedmore tokens than theyactuallydeposited.

Exploit Scenario:

Let’s set a scenario of a portfolio that hasonly anLP token for simplicity,where the liquidity

pool is balanced with 100 tokens each side (100 tokenA, 100 tokenB). An attacker can set a

buyAmountsarray that looks like this [100000000,100]. Theexchangewill swapthe invested

tokens to theunderlying tokensof thepoolanddeposit thisunbalancedallocationof tokens

to the liquidity pool, the liquidity pool will only take 100 tokenA and 100 tokenB and return

100000000 - 100 tokenA to the attacker, then the index tokens will be minted based on the

swap results which do not take into account the returned dust. This results in the attacker

havingmore index tokens than the actual deposit.

10

Files Affected:

SHB.1.1: AbstractLPHandler.sol

58 (amountA, amountB, liquidity) = router.addLiquidity(

59 address(underlying[0]),

60 address(underlying[1]),

61 _amount[0],

62 _amount[1],

63 1,

64 1,

65 _to,

66 block.timestamp

67);

68

69 _returnDust(

70 underlying[0],

71 user // we need to pass user from exchange

72);

73 _returnDust(

74 underlying[1],

75 user // we need to pass user from exchange

76);

SHB.1.2: OffChainIndexSwap.sol

173 // Perform off-chain investment

174 balanceInUSD = _offChainInvestment(_initData, _tokenAmount,

↪→ _lpSlippage);

SHB.1.3: OffChainIndexSwap.sol

235 function _offChainInvestment(

236 ExchangeData.ZeroExData memory inputData,

237 uint256 _tokenAmount,

238 uint256[] calldata _lpSlippage

239) internal virtual returns (uint256 balanceInUSD) {

11

240 uint256 underlyingIndex = 0;

241 balanceInUSD = 0;

242 address[] memory _tokens = index.getTokens();

243 uint256[] memory _buyAmount = calculateSwapAmountsOffChain(index,

↪→ _tokenAmount);

244 for (uint256 i = 0; i < _tokens.length; i++) {

245 // Get the handler contract for the current token

246 // Perform off-chain token swap using the exchange contract

247 (balanceInUSD, underlyingIndex) = exchange.swapOffChainTokens(

248 ExchangeData.IndexOperationData(

249 ExchangeData.InputData(

250 inputData.buyAmount,

251 inputData.sellTokenAddress,

252 inputData._offChainHandler,

253 inputData._buySwapData

254),

255 index,

256 underlyingIndex,

257 inputData.protocolFee[i],

258 balanceInUSD,

259 _lpSlippage[i],

260 _buyAmount[i],

261 _tokens[i],

262 msg.sender

263)

264);

265 }

266 }

Recommendation:

Consider relying on the fair LP price of the returned liquidity by the AMM pair to calculate

the amount of index tokens to beminted.

12

Updates

The teamhas resolved the issue by relying on the value of theminted LP tokens calculated

using a customaggregator that uses the fair lp price formula.

SHB.2 StreamingFeeCheckCanCause aDenial of Service

• Severity : CRITICAL

• Status : Fixed

• Likelihood : 3

• Impact : 3

Description:

The function calculateStreamingFee checks if _lastCharged is less than block.timestamp.

If _lastCharged is not less than block.timestamp, the function reverts with

ErrorLibrary.NoTimePassedSinceLastCharge(). This check effectively enforces that fees

are taken only once per block. Any subsequent calls within the same block will revert,

leading to a denial of service.

Exploit Scenario:

Anattackercanexploit thisvulnerabilityby front-runningall calls to theprotocol that takes

fees with an operation that calls the calculateStreamingFee function. This will cause all

subsequent callswithin the sameblock to revert, effectively causing a denial of service for

all those calls.

Files Affected:

SHB.2.1: FeeLibrary.sol

17 function calculateStreamingFee(

18 uint256 _totalSupply,

19 uint256 _vaultBalance,

20 uint256 _lastCharged,

21 uint256 _fee

13

22) public view returns (uint256 tokensToMint) {

23 if (_lastCharged >= block.timestamp) {

24 revert ErrorLibrary.NoTimePassedSinceLastCharge();

25 }

26

27 uint256 feeForIntervall = _vaultBalance.mul(_fee).mul(block.

↪→ timestamp.sub(_lastCharged)).div(365 days).div(

28 TOTAL_WEIGHT

29);

30

31 tokensToMint = feeForIntervall.mul(_totalSupply).div(_vaultBalance.

↪→ sub(feeForIntervall));

32 }

Recommendation:

Consider returning zero if _lastCharged is equal to the block.timestamp to avoid causing a

denial of servicewhen the feewas already taken by the protocol for that interval.

Updates

The teamhasresolved the issuebyremoving therevert statementandreturningzerowhen

_lastChargedisequal totheblock.timestamptoavoidDoSwhenatransactionwasexecuted

in the sameblock.

SHB.2.2: FeeLibrary.sol

12 function calculateStreamingFee(

13 uint256 _totalSupply,

14 uint256 _vaultBalance,

15 uint256 _lastCharged,

16 uint256 _fee

17) public view returns (uint256 tokensToMint) {

18 if (_lastCharged >= block.timestamp) {

19 return tokensToMint;

20 }

14

21 uint256 feeForIntervall = (_vaultBalance * (_fee) * (block.timestamp

↪→ - _lastCharged)) / (365 days) / (TOTAL_WEIGHT);

22

23 tokensToMint = (feeForIntervall * _totalSupply) / (_vaultBalance -

↪→ feeForIntervall);

24

25 return tokensToMint;

26 }

SHB.3 Incorrect Token Price Calculation Leading to Denial of

Service

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

The contract uses Chainlink price feeds to calculate the price of a token in multiple han-

dlers. This price is then used to validate the LP slippage. However, when calculating the

price of a token, the contract specifies 1e18 as an input to represent one token. While this

is correct for tokens that have a decimal of 18, it will yield an extremely incorrect price for

tokens that have a different decimal count. This can lead to a denial of service (DoS), as the

slippage protection will always revert the deposit and redeem transactions due to the in-

correct price calculation. It is worth mentioning that deposit and redeem are used in in-

vestments andwithdrawals for each non primary token that uses an LP handler, therefore

thiswill causeaDoS in themain functionalities of theprotocol. Thesame issueexists in the

AbstractLPHandler for calculating the liquidity fair value price.

15

Files Affected:

SHB.3.1: ApeSwapLPHandler.sol

75 function deposit(

76 address _lpAsset,

77 uint256[] memory _amount,

78 uint256 _lpSlippage,

79 address _to,

80 address user

81) public payable override {

82 address[] memory t = getUnderlying(_lpAsset);

83 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

84 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

85 _deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,

↪→ p1, p2);

86 emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);

87 }

SHB.3.2: ApeSwapLPHandler.sol

92 function redeem(FunctionParameters.RedeemData calldata inputData) public

↪→ override {

93 address[] memory t = getUnderlying(inputData._yieldAsset);

94 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

95 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

96 _redeem(inputData, routerAddress, p1, p2);

97 emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

↪→ inputData._amount, inputData._to, inputData.isWETH);

98 }

16

SHB.3.3: BiSwapLPHandler.sol

73 function deposit(

74 address _lpAsset,

75 uint256[] memory _amount,

76 uint256 _lpSlippage,

77 address _to,

78 address user

79) public payable override {

80 address[] memory t = getUnderlying(_lpAsset);

81 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

82 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

83 _deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,

↪→ p1, p2);

84 emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);

85 }

SHB.3.4: BiSwapLPHandler.sol

90 function redeem(FunctionParameters.RedeemData calldata inputData) public

↪→ override {

91 address[] memory t = getUnderlying(inputData._yieldAsset);

92 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

93 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

94 _redeem(inputData, routerAddress, p1, p2);

95 emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

↪→ inputData._amount, inputData._to, inputData.isWETH);

96 }

SHB.3.5: PancakeSwapLPHandler.sol

74 function deposit(

75 address _lpAsset,

17

76 uint256[] memory _amount,

77 uint256 _lpSlippage,

78 address _to,

79 address user

80) public payable override {

81 address[] memory t = getUnderlying(_lpAsset);

82 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

83 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

84 _deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,

↪→ p1, p2);

85 emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);

86 }

SHB.3.6: PancakeSwapLPHandler.sol

91 function redeem(FunctionParameters.RedeemData calldata inputData) public

↪→ override {

92 address[] memory t = getUnderlying(inputData._yieldAsset);

93 uint p1 = _oracle.getPriceTokenUSD18Decimals(t[0],

↪→ 1000000000000000000);

94 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],

↪→ 1000000000000000000);

95 _redeem(inputData, routerAddress, p1, p2);

96 emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

↪→ inputData._amount, inputData._to, inputData.isWETH);

97 }

SHB.3.7: AbstractLPHandler.sol

205 function _calculatePrice(address t, address priceOracle) internal view

↪→ returns (uint256) {

206 address[] memory underlying = _getUnderlyingTokens(t);

207 LPInterface _asset = LPInterface(t);

208 (uint reserve0, uint reserve1,) = _asset.getReserves();

18

209 uint totalSupply = _asset.totalSupply();

210 uint price0 = IPriceOracle(priceOracle).getPriceTokenUSD18Decimals(

↪→ underlying[0], ONE_ETH);

211 uint price1 = IPriceOracle(priceOracle).getPriceTokenUSD18Decimals(

↪→ underlying[1], ONE_ETH);

212

213 uint256 sqrtReserve = Babylonian.sqrt(reserve0.mul(reserve1));

214 uint256 sqrtPrice = Babylonian.sqrt(price0.mul(price1));

215 uint256 price = sqrtReserve.mul(sqrtPrice).mul(2).div(totalSupply);

216 return price;

217 }

Recommendation:

Tomitigate this issue, it is recommended todynamically calculate the token representation

based on the token’s decimal count. Instead of hard-coding 1e18 as the representation of

one token, the contract should call the decimals() function on the token contract to get the

correct decimal count. Thiswill ensure that the price calculation is accurate for all tokens,

regardless of their decimal count.

Updates

The teamhasresolved the issuebyaddinga function in thePriceOraclecontract that calcu-

lated the price of one token taking into account the decimals.

SHB.3.8: PriceOracle.sol

224 /**

225 * @notice Returns the latest token price for a specific token for 1

↪→ unit

226 * @param _base base asset address

227 * @return amountOut The latest USD token price of the base token in

↪→ 18 decimals

228 */

229 function getPriceForOneTokenInUSD(address _base) public view returns (

↪→ uint256 amountOut) {

19

230 uint256 amountIn = 10 ** IERC20MetadataUpgradeable(_base).decimals()

↪→ ;

231 amountOut = getPriceTokenUSD18Decimals(_base, amountIn);

232 }

SHB.4 Inaccuracy in LP Token Price Calculation Due to Deci-

malMismatch

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

The _calculatePrice function gets the price of a full token (1 x decimal) from Chainlink, but

the reserves returned by the pair are in units of tokens (alreadymultiplied by the decimal).

Thismismatch in decimal representation leads to an inaccuracywhencalculating theprice

of an LP token.

Files Affected:

SHB.4.1: AbstractLPHandler.sol

205 function _calculatePrice(address t, address priceOracle) internal view

↪→ returns (uint256) {

206 address[] memory underlying = _getUnderlyingTokens(t);

207 LPInterface _asset = LPInterface(t);

208 (uint reserve0, uint reserve1,) = _asset.getReserves();

209 uint totalSupply = _asset.totalSupply();

210 uint price0 = IPriceOracle(priceOracle).getPriceTokenUSD18Decimals(

↪→ underlying[0], ONE_ETH);

211 uint price1 = IPriceOracle(priceOracle).getPriceTokenUSD18Decimals(

↪→ underlying[1], ONE_ETH);

20

212

213 uint256 sqrtReserve = Babylonian.sqrt(reserve0.mul(reserve1));

214 uint256 sqrtPrice = Babylonian.sqrt(price0.mul(price1));

215 uint256 price = sqrtReserve.mul(sqrtPrice).mul(2).div(totalSupply);

216 return price;

217 }

Recommendation:

Tomitigate this issue, it is recommended to align the decimal representationwhen getting

theprices fromChainlinkandwhengetting the reserves fromthepair. This canbeachieved

bygetting thepriceofoneunit of the token insteadofa full token. Thiswouldensure that the

calculation is performed with the correct decimal representation, leading to an accurate

price calculation for LP tokens.

Updates

The team has resolved the issue by calculating the value of the minted LP tokens using a

customaggregator that uses the fair LP price formula.

SHB.5 PotentialLossof IndexTokensDuetoLackofSwapRe-

sult Update

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The _swapTokenToToken function does not update the swapResult array if both tokenIn and

tokenOut are primary tokens. This leads to the function returning zero as a default value,

21

which will not get added to investedAmountAfterSlippage. The investedAmountAfterSlip-

page is used to calculate the index tokens to beminted. This could potentially lead to a loss

of index tokens for the user.

Files Affected:

SHB.5.1: Exchange.sol

329 if (!tokenInfoIn.primary !tokenInfoOut.primary) {

330 if (inputData._isInvesting) {

331 swapResult = _swapTokenToTokenInvest(inputData, tokenInfoIn.enabled)

↪→ ;

332 } else {

333 swapResult = _swapTokenToTokenWithdraw(inputData);

334 }

335 } else {

336 IHandler handler = IHandler(tokenInfoOut.handler);

337 swapResult = new uint256[](1);

338 if (isWETH(tokenOut, address(handler))) {

339 address to = inputData._to;

340 if (inputData._isInvesting) {

341 to = address(this);

342 }

343 _swapTokenToETH(

344 FunctionParameters.SwapTokenToETHData(

345 tokenIn,

346 to,

347 inputData._swapHandler,

348 inputData._swapAmount,

349 inputData._slippage,

350 inputData._lpSlippage

351)

352);

353 if (inputData._isInvesting) {

354 uint256 balance = address(this).balance;

22

355 IWETH(tokenOut).deposit{value: balance}();

356 if (inputData._to != address(this)) {

357 IWETH(tokenOut).transfer(inputData._to, balance);

358 }

359 }

360 } else {

361 swapResult[0] = IndexSwapLibrary.transferAndSwapTokenToToken(

362 tokenIn,

363 swapHandler,

364 inputData._swapAmount,

365 inputData._slippage,

366 tokenOut,

367 inputData._to,

368 tokenInfoIn.enabled

369);

370 }

371 }

372 return swapResult;

Recommendation:

Tomitigate this issue, it is recommended toupdate theswapResult arraywith theamountof

ETHreturned fromthe _swapTokenToETH function if both tokenInand tokenOut areprimary

tokens.

Updates

The team has resolved the issue by assigning the _swapTokenToETH return value to the

swapResult.

SHB.5.2: Exchange.sol

344 } else {

345 IHandler handler = IHandler(tokenInfoOut.handler);

346 swapResult = new uint256[](1);

347 if (isWETH(tokenOut, address(handler))) {

23

348 address to = inputData._to;

349 if (inputData._isInvesting) {

350 to = address(this);

351 }

352 swapResult = _swapTokenToETH(

353 FunctionParameters.SwapTokenToETHData(

354 tokenIn,

355 to,

356 inputData._swapHandler,

357 inputData._swapAmount,

358 inputData._slippage,

359 inputData._lpSlippage

360)

361);

SHB.6 Misevaluation of User’s Investments in LP Tokens

• Severity : HIGH

• Status : Fixed

• Likelihood : 2

• Impact : 3

Description:

The investInFund mis-evaluates the value of a user’s investment in liquidity provider (LP)

tokens. The project implements index tokens that represent the investor’s portfolio, a part

ofwhich canbeLP tokens fromproviding liquidity to a pair. The project calculates the value

of theseLPtokensbasedontheunderlyingtokens’value inUSD.However, thismaynotyield

accurate results due to the phenomenon known as impermanent loss, which LP providers

typically experiencewhen the price of one of the tokens in the pair shifts in themarket.

In a scenariowhere the price of one of the tokens in the pair shifts significantly, the cal-

culated value of the LP tokens based on the underlying tokens’ value in USD may not ac-

curately reflect the user’s investment. This can lead to a misrepresentation of the user’s

portfolio value, potentially causing financial losses to the protocol.

24

Files Affected:

SHB.6.1: IndexSwap.sol

241 investedAmountAfterSlippage = _exchange._swapTokenToTokens{value: msg.

↪→ value}(

242 FunctionParameters.SwapTokenToTokensData(

243 address(this),

244 _token,

245 investData._swapHandler,

246 msg.sender,

247 _amount,

248 totalSupply(),

249 amount,

250 slippage,

251 investData._lpSlippage

252)

253);

254

255 uint256 investedAmountAfterSlippageBNB = _oracle.getUsdEthPrice(

↪→ investedAmountAfterSlippage);

256

257 if (investedAmountAfterSlippageBNB <= 0) {

258 revert ErrorLibrary.ZeroFinalInvestmentValue();

259 }

260 uint256 tokenAmount;

261 uint256 _totalSupply = totalSupply();

262 tokenAmount = getTokenAmount(_totalSupply,

↪→ investedAmountAfterSlippageBNB, vaultBalanceInBNB);

263 if (tokenAmount <= 0) {

264 revert ErrorLibrary.ZeroTokenAmount();

265 }

266 _mintInvest(_to, tokenAmount);

SHB.6.2: OffChainIndexSwap.sol

25

173 // Perform off-chain investment

174 balanceInUSD = _offChainInvestment(_initData, _tokenAmount, _lpSlippage)

↪→ ;

175

176 // Calculate the invested amount in BNB after slippage

177 uint256 investedAmountAfterSlippageBNB = oracle.getUsdEthPrice(

↪→ balanceInUSD);

178

179 // Ensure the final invested amount is not zero

180 require(investedAmountAfterSlippageBNB > 0, "final invested amount is

↪→ zero");

181

182 // Calculate the vault balance in BNB

183 uint256 vaultBalanceBNB = oracle.getUsdEthPrice(vaultBalance);

184

185 // Calculate the token amount to be minted

186 uint256 tokenAmount;

187 uint256 _totalSupply = index.totalSupply();

188 if (_totalSupply > 0) {

189 tokenAmount = IndexSwapLibrary._mintShareAmount(

↪→ investedAmountAfterSlippageBNB, vaultBalanceBNB, _totalSupply);

190 } else {

191 tokenAmount = investedAmountAfterSlippageBNB;

192 }

193

194 // Ensure the token amount is not zero

195 require(tokenAmount > 0, "token amount is 0");

196

197 // Mint investment tokens to the specified address

198 index.mintInvest(_to, tokenAmount);

SHB.6.3: Exchange.sol

577 for (uint256 j = 0; j < swapResult.length; j++) {

578 investedAmountAfterSlippage = investedAmountAfterSlippage.add(

26

579 oracle.getPriceTokenUSD18Decimals(underlying[j], swapResult[j])

580);

581 }

Recommendation:

To mitigate this issue, it is recommended to use the getFairLpPrice function, which calcu-

lates the fair price of an LP token based on the real reserves.

Updates

Theteamresolved the issuebyrelyingonthevalueof themintedLPtokenscalculatedusing

a customaggregator, which uses the fair LP price formula.

SHB.7 Potential Portfolio ImbalanceDue to OffChain Swaps

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The protocol allows for off-chain exchanges, such as the 0x protocol, to generate transac-

tions that will swap a user’s tokens into the portfolio tokens. The contract allows the user

to input the buyAmounts for how the invested amountwill be allocated in the portfolio, then

it calculates theseamountsusing thedenormsandverifies them tobe close to the inputted

values by the user, the actual verification passes if the user supplied amounts are at most

50%smaller than the expected amounts, andwill always pass ifwe passmore than the ex-

pected amount.

Therefore, the contract allows for ahighdifferencebetween the inputted valuesand the

calculated values. This can allow a user to capitalize on this discrepancy to unbalance the

portfolio, putting it at a different risk level from the one intended by the portfolio creator.

27

In addition to that, this can result in triggeringmultiple rebalancing transactions to get

theportfolio back to the rebalancedstate. It’sworthmentioning that this can result in a sig-

nificant loss to the investors due to the fees thatwill be spent in the rebalancing process.

Exploit Scenario:

An attacker can exploit this flaw by inputting buyAmounts that significantly differ from the

calculatedvalues. This canallow theattacker tounbalance theportfolio, potentially putting

it at a different risk level from the one intended by the portfolio creator. This could lead to

financial losses for other users.

Files Affected:

SHB.7.1: Exchange.sol

686 function validateAmount(uint256 expectedAmount, uint256 userAmount,

↪→ uint256 len) internal pure {

687 uint256 PERCENTIn18Decimal = 10 ** 22;

688 uint256 diff = expectedAmount.div(len).mul(PERCENTIn18Decimal).div(

↪→ userAmount);

689 uint256 diffPercentage = diff < PERCENTIn18Decimal ?

↪→ PERCENTIn18Decimal.sub(diff) : diff.sub(PERCENTIn18Decimal);

690 if (diffPercentage > PERCENTIn18Decimal) {

691 revert ErrorLibrary.InvalidBuyValues();

692 }

693 }

Recommendation:

Tomitigate this issue, it is recommendedto implementastricterverificationmechanismfor

theuserAmount inputtedby theuser. Thiscould involvereducing thealloweddifferencebe-

tween the inputted values and the calculated values. Thiswould reduce the risk of causing

an unbalance to the portfolio.

28

Updates

The team has resolved the issue by adjusting the amount validation process to require a

reasonable difference between the expectedAmount and userAmount.

SHB.7.2: Exchange.sol

769 function validateAmount(uint256 expectedAmount, uint256 userAmount,

↪→ uint256 underlyingLen) internal pure {

770 uint256 exceptedRangeDecimal = 10 ** 6;

771 uint256[] memory diff = new uint256[](underlyingLen);

772

773 if (underlyingLen > 1) {

774 uint amount0 = expectedAmount / underlyingLen;

775 uint amount1 = expectedAmount - amount0;

776

777 diff[0] = getdiff(userAmount, amount0, exceptedRangeDecimal);

778

779 diff[1] = getdiff(userAmount, amount1, exceptedRangeDecimal);

780 } else {

781 diff[0] = getdiff(userAmount, expectedAmount, exceptedRangeDecimal

↪→);

782 }

783 for (uint256 j = 0; j < underlyingLen; j++) {

784 if (diff[j] > exceptedRangeDecimal) {

785 revert ErrorLibrary.InvalidBuyValues();

786 }

787 }

788 }

SHB.7.3: Exchange.sol

813 function getdiff(uint _userAmount, uint _calcAmount, uint

↪→ _exceptedRangeDecimal) internal pure returns (uint) {

814 return

815 _userAmount > _calcAmount

816 ? (_userAmount * _exceptedRangeDecimal) / _calcAmount

29

817 : (_calcAmount * _exceptedRangeDecimal) / _userAmount;

818 }

SHB.8 Bypass ofWithdrawal CooldownPeriodRestriction

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The investInFund function allows an investor to specify a _to address that will receive the

minted index tokensandupdates thisaddress’s timestamptorestrict it frominstantlywith-

drawing, forcing it to wait for the cooldown period to end. However, this restriction can be

easilybypassedby transferring the index tokens toanotheraddressandwithdrawingusing

that address. This is possible when transferableToPublic is enabled in the config or when

twouserscollaborate in thecasewhentransferable is trueandthoseusersarewhitelisted.

Exploit Scenario:

Any user can exploit this issue by transferring the index tokens to another address and

withdrawing using that address, effectively bypassing thewithdrawal restriction. This can

allow the attacker towithdraw their funds before the cooldownperiod ends.

Files Affected:

SHB.8.1: IndexSwap.sol

266 _mintInvest(_to, tokenAmount);

267 lastInvestmentTime[_to] = block.timestamp;

SHB.8.2: IndexSwap.sol

300 function withdrawFund(FunctionParameters.WithdrawFund calldata initData)

↪→ external nonReentrant notPaused {

30

301 IndexSwapLibrary.checkCoolDownPeriod(lastInvestmentTime[msg.sender],

↪→ _tokenRegistry);

SHB.8.3: IndexSwap.sol

115 function _beforeTokenTransfer(address from, address to, uint256 amount)

↪→ internal virtual override {

116 super._beforeTokenTransfer(from, to, amount);

117 IndexSwapLibrary._beforeTokenTransfer(from, to, _iAssetManagerConfig

↪→);

118 }

SHB.8.4: IndexLibrary.sol

507 function _beforeTokenTransfer(address from, address to,

↪→ IAssetManagerConfig config) external {

508 if (from == address(0) to == address(0)) {

509 return;

510 }

511 if (!(config.transferableToPublic() (config.transferable() &&

↪→ config.whitelistedUsers(to)))) {

512 revert ErrorLibrary.Transferprohibited();

513 }

514 }

Recommendation:

Tomitigate this issue, it is recommendedto implementamechanismthat tracks theoriginal

address that received theminted index tokensandapplies thewithdrawal restriction toany

subsequent addresses that receive the tokens. This would prevent users from being able

to bypass thewithdrawal restriction by transferring the tokens to another address. Alter-

natively, the contract could disallow transfers of index tokens during the cooldown period,

ensuring that thewithdrawal restriction cannot be bypassed.

31

Updates

Theteamresolved the issuebyaddingacheck in the_beforeTokenTransfer that requires the

cooldownperiod to pass before allowing the token transfer.

SHB.8.5: IndexSwap.sol

114 function _beforeTokenTransfer(address from, address to, uint256 amount

↪→) internal virtual override {

115 super._beforeTokenTransfer(from, to, amount);

116 if (from == address(0) to == address(0)) {

117 return;

118 }

119 if (

120 !(_iAssetManagerConfig.transferableToPublic()

121 (_iAssetManagerConfig.transferable() && _iAssetManagerConfig.

↪→ whitelistedUsers(to)))

122) {

123 revert ErrorLibrary.Transferprohibited();

124 }

125 checkCoolDownPeriod(from);

126 }

SHB.8.6: IndexSwap.sol

788 function checkCoolDownPeriod(address _user) public view {

789 if (getRemainingCoolDown(_user) > 0) {

790 revert ErrorLibrary.CoolDownPeriodNotPassed();

791 }

792 }

32

SHB.9 FlawinShareMintingLeadingtoPotentialFundMisap-

propriation

• Severity : MEDIUM

• Status : Mitigated

• Likelihood : 1

• Impact : 3

Description:

The protocol swaps the invested funds into the tokens of the portfolio, then calculates the

USDvalue of the swap results, and converts them toBNB to decide howmany index tokens

will beminted for the user. These price conversions toUSDand then toBNBare doneusing

Chainlink price feeds.

However, there can be a delay in the reflection of the actual market value of the tokens

in the Chainlink price feeds. This delay can be exploited by a user whowithdraws and then

re-deposits after the value goes up in the feed, ending upwithmore index tokenswhile de-

positing the same initial amount. This means the balance didn’t change, but the user got

more index tokens, allowing them to withdraw a part of someone else’s funds. The same

can be applied if the BNB’s value increases in USD.

Exploit Scenario:

An attacker can exploit this flaw by monitoring the market for tokens that are going up in

value. They can then withdraw their funds and re-deposit after the value goes up in the

Chainlink price feed, effectively gettingmore index tokenswhile depositing the same initial

amount. This allows them to withdraw a part of someone else’s funds, leading to financial

losses for other users.

33

Files Affected:

SHB.9.1: Exchange.sol

577 for (uint256 j = 0; j < swapResult.length; j++) {

578 investedAmountAfterSlippage = investedAmountAfterSlippage.add(

579 oracle.getPriceTokenUSD18Decimals(underlying[j], swapResult[j])

580);

581 }

SHB.9.2: IndexSwap.sol

255 uint256 investedAmountAfterSlippageBNB = _oracle.getUsdEthPrice(

↪→ investedAmountAfterSlippage);

256

257 if (investedAmountAfterSlippageBNB <= 0) {

258 revert ErrorLibrary.ZeroFinalInvestmentValue();

259 }

260 uint256 tokenAmount;

261 uint256 _totalSupply = totalSupply();

262 tokenAmount = getTokenAmount(_totalSupply,

↪→ investedAmountAfterSlippageBNB, vaultBalanceInBNB);

263 if (tokenAmount <= 0) {

264 revert ErrorLibrary.ZeroTokenAmount();

265 }

266 _mintInvest(_to, tokenAmount);

Recommendation:

Tomitigate this issue, it isrecommendedtoaddadelaybetweenthewithdrawalandthenext

invest call topreventanattacker fromexploiting thedelaybetween therealworldpriceand

the Chainlink price feeds, or implement amechanism that locks thewithdrawal and invest

functions during periods of significant price volatility to reduce the risk.

34

Updates

The team mitigated the issue by removing the USD to BNB conversion to calculate the

minted amount, this action reduces the likelihood of the attack since it will only be

applicable on price changes of the portfolio tokens in USD.

SHB.10 UnfairDistributionofRewardsDue toTimingofclaim-

Tokens Function Calls

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 2

• Impact : 2

Description:

TheclaimTokensfunction intheIndexSwapcontract,whichcanbecalledbyanyone,collects

rewards from handlers that require a method call to harvest the rewards. These rewards

are then added to the vault. If this function is not invoked before any investInFund call, a

newdepositorcouldpotentiallyreceiveashareof therewardsthatweregeneratedbyother

investors. Similarly, if it is not called beforewithdrawFund calls, the withdrawing investor

might not receive their share of the rewards generated by their capital. This can lead to an

unfair distribution of rewards.

Files Affected:

SHB.10.1: IndexSwap.sol

678 function claimTokens(address[] calldata tokens) external nonReentrant {

679 _exchange.claimTokens(IIndexSwap(address(this)), tokens);

680 }

SHB.10.2: Exchange.sol

120 function claimTokens(IIndexSwap _index, address[] calldata _tokens)

↪→ external onlyIndexManager {

35

121 for (uint256 i = 0; i < _tokens.length; i++) {

122 address _token = _tokens[i];

123 IHandler handler = IHandler(getTokenInfo(_token).handler);

124

125 (bytes memory callData, address callAddress) = handler.

↪→ getClaimTokenCalldata(_token, _index.vault());

126

127 if (callAddress != zeroAddress) {

128 safe.executeWallet(callAddress, callData);

129 }

130 }

131

132 emit TokensClaimed(block.timestamp, address(_index), _tokens);

133 }

Recommendation:

Consider implementing a mechanism that automatically distributes rewards to investors

in proportion to their shares at the time of each deposit or withdrawal. This would ensure

that rewards are fairly distributed and cannot bemanipulated by timing transactions.

Updates

Theteamacknowledgedthe issue,statingthat theassetmanagerwillbespecifying thehar-

vest time and frequency in the strategy (frontend).So, users can consider this information

to choose their investment time.

SHB.11 Griefing Attack inWithdrawal Process

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

36

Description:

The contract has a vulnerability in its withdrawal function that allows an attacker to grief

any investorwhowants towithdraw their funds. The contract enforces a duration between

the investor’s last deposit and their withdrawal. However, when investing, an investor can

specify a _to address that will receive the shares and also update its lastInvestmentTime

to block.timestamp. Thismeans an attacker can invest theminimum amount of shares for

another investor, updating their lastInvestmentTime and effectively preventing them from

withdrawing their funds.

Exploit Scenario:

An attacker can exploit this issue by front-running the withdrawal transaction of any in-

vestorby investing theminimumamountofshares then,updating their lastInvestmentTime

andeffectively preventing them fromwithdrawing their funds. This canbedone repeatedly,

causing continuous grief to the investors.

Files Affected:

SHB.11.1: IndexSwap.sol

266 _mintInvest(_to, tokenAmount);

267 lastInvestmentTime[_to] = block.timestamp;

SHB.11.2: IndexSwap.sol

300 function withdrawFund(FunctionParameters.WithdrawFund calldata initData)

↪→ external nonReentrant notPaused {

301 IndexSwapLibrary.checkCoolDownPeriod(lastInvestmentTime[msg.sender],

↪→ _tokenRegistry);

Recommendation:

Tomitigate this issue, it is recommended to separate the logic for updating the lastInvest-

mentTime from the investment function. Thisway, only the investor themselves canupdate

their lastInvestmentTimewhen theymake an investment. Alternatively, a validation could

37

be added to ensure that the _to address in the investment function matches msg.sender,

preventing an attacker fromupdating the lastInvestmentTime of another investor.

Updates

The team has resolved the issue by removing the option for users to invest on behalf of

someone else. In addition to that, The cooldown period was adapted to take into account

the invested amount.

SHB.12 Hard-coded Slippage Leading to Potential Fund

Freeze

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The contract uses a hardcoded slippage of 10% in the OneInch, Paraswap, and ZeroEx han-

dlers. While this is generally a good practice to avoid losing value in MEV scenarios, it can

becomean issue involatilemarketconditions. If thepriceofa tokenfluctuatesbymorethan

10%within a short period, transactionsmay fail due to the slippage limit, effectively leading

to a freeze of funds.

In a highly volatile market, the price of a token can fluctuate by more than 10% within a

short period. If a user tries to performa transaction during this period, the transactionmay

fail due to thehard-codedslippage limit of 10%. This caneffectively lead toa freezeof funds,

as usersmay be unable to perform transactions until themarket stabilizes.

Files Affected:

SHB.12.1: ExternalSlippageControl.sol

32 function getSlippage(uint256 _amount) internal view returns (uint256

↪→ minAmount) {

38

33 minAmount = _amount.mul(HUNDRED_PERCENT.sub(maxSlippage)).div(

↪→ HUNDRED_PERCENT);

34 }

SHB.12.2: ExternalSlippageControl.sol

40 function validateSwap(uint priceSellToken, uint priceBuyToken)

↪→ internal view {

41 if (maxSlippage != 0) {

42 if (priceBuyToken < getSlippage(priceSellToken)) {

43 revert ErrorLibrary.InvalidAmount();

44 }

45 }

46 }

Recommendation:

Tomitigate this issue, it is recommended to implement a dynamic slippagemechanism in-

stead of using a hard-coded value. This mechanism could adjust the slippage limit based

onmarket conditions, allowing forhigher slippage inmorevolatilemarketsand lowerslip-

page inmore stablemarkets. Thiswould provide a balance between protecting users from

MEVand ensuring that transactions can still be performed in volatilemarket conditions.

Updates

The team acknowledged the issue, stating that they’ll be adapting the maxSlippage in

volatilemarket conditions.

SHB.13 Potential Sandwich Attack Due to Chainlink Oracle

Failure

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

39

Description:

TheAMMhandlers rely onChainlink to determine the value of a token and calculate themi-

nAmount dependingon theuser-supplied slippage. However, if theChainlinkoracle fails to

deliver the value, the userwill add/remove liquiditywith no slippage protection. This could

potentially expose the user to a sandwich attack,where an attackermanipulates the token

pair to their extractMEV.

Exploit Scenario:

Ausercalls investInFund fromIndexSwap to invest. The tokens investedwill beswapped to

various other tokens using a swapHandler. The slippage calculation is done in the getSlip-

page function and it uses Chainlink to get prices. However, if Chainlink fails, the currentA-

mount will be set to 0, and so the investor will enter the trade with no slippage protection.

This could expose investors to a sandwich attack,where an attackermanipulates the price

of the token to their advantage, potentially leading to financial losses.

Files Affected:

SHB.13.1: SlippageControl.sol

39 function _validateLPSlippage(

40 uint _amountA,

41 uint _amountB,

42 uint _priceA,

43 uint _priceB,

44 uint _lpSlippage

45) internal view {

46 require(maxSlippage >= _lpSlippage, "Invalid LP Slippage!");

47 uint amountDivision = _amountA.mul(10 ** 18).div(_amountB);

48 uint priceDivision = _priceB.mul(10 ** 18).div(_priceA);

49 uint absoluteValue = 0;

50 if (amountDivision > priceDivision) {

51 absoluteValue = amountDivision.sub(priceDivision);

52 } else {

53 absoluteValue = priceDivision.sub(amountDivision);

40

54 }

55 if (absoluteValue.mul(10 ** 2) > (_lpSlippage.mul(10 ** 18))) {

56 revert ErrorLibrary.InvalidAmount();

Recommendation:

Tomitigate this issue, it is recommended to add a check if the returned value is 0, the func-

tion should revert with an appropriate error message or use a default value for slippage.

This will ensure that the user always enters the tradewith slippage protection, preventing

potential sandwich attacks.

Updates

The team resolved the issue by reverting the transaction when the price feed returns zero

as a price.

41

SHB.13.2: PriceOracle.sol

96 function latestRoundData(address base, address quote) internal view

↪→ returns (int256) {

97 (

98 ,

99 /*uint80 roundID*/

100 int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80

↪→ answeredInRound*/,

101 ,

102 uint256 updatedAt,

103

104) = aggregatorAddresses[base].aggregatorInterfaces[quote].

↪→ latestRoundData();

105

106 if (updatedAt + oracleExpirationThreshold < block.timestamp) {

107 revert ErrorLibrary.PriceOracleExpired();

108 }

109

110 if (price == 0) {

111 revert ErrorLibrary.PriceOracleInvalid();

112 }

113

114 return price;

115 }

SHB.14 Lack of Freshness Check for Chainlink Price Feed

Data

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 1

• Impact : 3

42

Description:

ThecontractusesChainlinkprice feedstoget the latestpriceof tokens. However, itdoesnot

check the updatedAt value returned by the latestRoundData function. According to Chain-

link’s documentation, consumers are encouraged to check the updatedAt value to ensure

they are receiving fresh data.

If theupdatedAtvalue isnotchecked, thecontractcouldpotentiallyusestaleoroutdated

price data, which could lead to incorrect calculations and potential loss of funds.

Files Affected:

SHB.14.1: PriceOracle.sol

90 function latestRoundData(address base, address quote) internal view

↪→ returns (int256) {

91 (

92 ,

93 /*uint80 roundID*/

94 int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80

↪→ answeredInRound*/,

95 ,

96 ,

97

98) = aggregatorAddresses[base].aggregatorInterfaces[quote].

↪→ latestRoundData();

99 return price;

100 }

Recommendation:

The contract should check the updatedAt value returned by the latestRoundData function

and revert the transaction if the data is not fresh.

43

Updates

The teamresolved the issueby requiring theupdatedAt tonot beolder thanaoracleExpira-

tionThreshold.

SHB.14.2: PriceOracle.sol

96 function latestRoundData(address base, address quote) internal view

↪→ returns (int256) {

97 (

98 ,

99 /*uint80 roundID*/

100 int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80

↪→ answeredInRound*/,

101 ,

102 uint256 updatedAt,

103

104) = aggregatorAddresses[base].aggregatorInterfaces[quote].

↪→ latestRoundData();

105

106 if (updatedAt + oracleExpirationThreshold < block.timestamp) {

107 revert ErrorLibrary.PriceOracleExpired();

108 }

109

110 if (price == 0) {

111 revert ErrorLibrary.PriceOracleInvalid();

112 }

113

114 return price;

115 }

44

SHB.15 Precision Loss in Price Calculation Function

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

The contract has a precision loss issue in the getPriceTokenUSD18Decimals function. The

contract performsdivision beforemultiplication (DecimalNormalization), which results in

a loss of precision. Specifically, the price will lose all the decimal points received by the

price feed.

Files Affected:

SHB.15.1: PriceOracle.sol

179 function getPriceTokenUSD18Decimals(address _base, uint256 amountIn)

↪→ public view returns (uint256 amountOut) {

180 uint256 output = uint256(getPrice(_base, Denominations.USD));

181 uint256 decimalChainlink = decimals(_base, Denominations.USD);

182 IERC20MetadataUpgradeable token = IERC20MetadataUpgradeable(_base);

183 uint8 decimal = token.decimals();

184

185 uint256 diff = uint256(18).sub(decimal);

186

187 amountOut = output.mul(amountIn).div(10 ** decimalChainlink).mul(10

↪→ ** diff);

188 }

Recommendation:

Tomitigate this issue, it is recommended to rearrange the operations to performmultipli-

cation before division. This can help prevent the loss of precision. The corrected line of

45

code would be: amountOut = output.mul(amountIn).mul(10 ** diff).div(10 ** decimalChain-

link); Thischangeensures that themultiplicationoperation isperformedbefore thedivision

operation,which increases the value of the amountOut, thus preserving precision.

Updates

The team resolved the issue by changing the operation order and performing multiplica-

tions before divisions.

SHB.15.2: PriceOracle.sol

197 function getPriceTokenUSD18Decimals(address _base, uint256 amountIn)

↪→ public view returns (uint256 amountOut) {

198 uint256 output = uint256(getPrice(_base, Denominations.USD));

199 uint256 decimalChainlink = decimals(_base, Denominations.USD);

200 IERC20MetadataUpgradeable token = IERC20MetadataUpgradeable(_base);

201 uint8 decimal = token.decimals();

202

203 uint256 diff = uint256(18) - (decimal);

204

205 amountOut = (output * amountIn * (10 ** diff)) / (10 **

↪→ decimalChainlink);

206 }

SHB.16 Mismatch Between _tokenAmount and buyAmounts

Array Can Lead toUninvested Funds

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

46

Description:

The smart contract has an issue in its investInFundOffChain function where the

_tokenAmount parameter, which represents the amount the userwants to invest, does not

necessarilymatch the actual amounts invested as specified in the buyAmounts array. This

mismatch can lead to a situationwhere some funds remain uninvested in the contract.

Exploit Scenario:

An investormay be exposed to this issue by unintentionally providing a _tokenAmount that

is larger than the total of the buyAmounts array. Thiswould result in some funds remaining

uninvested in the contract. An attacker could then potentially withdraw these uninvested

funds from the contract using the same issue, effectivelywithdrawing funds from the con-

tract.

Files Affected:

SHB.16.1: OffChainIndexSwap.sol

141 if (msg.value > 0) {

142 if (!(WETH == _initData.sellTokenAddress)) {

143 revert ErrorLibrary.InvalidToken();

144 }

145 _tokenAmount = msg.value;

146 IndexSwapLibrary._checkInvestmentValue(_tokenAmount,

↪→ iAssetManagerConfig);

147

148 // Deposit ETH into WETH

149 IWETH(WETH).deposit{value: msg.value}();

150

151 // Transfer the WETH to index operations contract

152 IWETH(WETH).transfer(address(exchange), _tokenAmount);

153 } else {

154 // Check permission and balance for the sell token

155 IndexSwapLibrary._checkPermissionAndBalance(

156 _initData.sellTokenAddress,

47

157 _tokenAmount,

158 iAssetManagerConfig,

159 msg.sender

160);

161

162 // Get the token balance in BNB

163 uint256 tokenBalanceInBNB = _getTokenBalanceInBNB(_initData.

↪→ sellTokenAddress, _tokenAmount);

164 IndexSwapLibrary._checkInvestmentValue(tokenBalanceInBNB,

↪→ iAssetManagerConfig);

165

166 // Transfer the sell token from the sender to index operations

↪→ contract

167 TransferHelper.safeTransferFrom(_initData.sellTokenAddress, msg.sender

↪→ , address(exchange), _tokenAmount);

168 }

Recommendation:

Tomitigate this issue, it isrecommendedtoreturntheuninvestedfunds if the_tokenAmount

wasmore than the required amount to get the buyAmounts.

Updates

The team resolved the issue by returning the unused funds to the investor using the retur-

nUninvestedFunds function.

SHB.16.2: Exchange.sol

790 /**

791 * @notice This function is used to return any uninvested funds left

↪→ in the Exchange handler during OffChain/Onchain investment

792 * @param _token Address of the deposit token whose undeposited dust

↪→ is left stuck in the contract

793 * @param _to Address where the uninvested funds have to be sent

794 */

48

795 function returnUninvestedFunds(address _token, address _to, uint256

↪→ _balance) internal {

796 if (_token != WETH) {

797 TransferHelper.safeTransfer(_token, _to, _balance);

798 } else {

799 (bool success,) = payable(_to).call{value: _balance}("");

800 if (!success) {

801 revert ErrorLibrary.ETHTransferFailed();

802 }

803 }

804 emit returnedUninvestedFunds(_to, _token, _balance, block.timestamp)

↪→ ;

805 }

SHB.17 Unchecked Transfer Return Value

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The contract has an issue in its _safeTokenTransfer function, where it does not check the

return value of a token transfer. The function generates transfer calldata to the Gnosis

Safe vault to execute, but the Safe only checks the transaction status without verifying if

the function returns a boolean and whether it’s true or not. This could potentially lead to

unnoticed failed transfers.

Files Affected:

SHB.17.1: Exchange.sol

158 function _safeTokenTransfer(address token, uint256 amount, address to)

↪→ internal {

49

159 bytes memory inputData = abi.encodeWithSelector(IERC20Upgradeable.

↪→ transfer.selector, to, amount);

160

161 safe.executeWallet(token, inputData);

162 }

SHB.17.2: VelvetSafeModule.sol

37 function executeWallet(

38 address handlerAddresses,

39 bytes calldata encodedCalls

40) public onlyOwner returns (bool isSuccess) {

41 isSuccess = exec(handlerAddresses, 0, encodedCalls, Enum.Operation.

↪→ Call);

42 require(isSuccess, "Call failed");

43 }

Recommendation:

Tomitigate this issue, it is recommendedtoaddacheck, if there isareturnvalueof the token

transfer in the_safeTokenTransfer function, then it shouldberequired tobe true toavoid the

casewhere the transfer fails silently.

Updates

Theteamresolvedthe issuebyaddingacheck if thetransfer functionreturnsabooleanrep-

resenting the status.

SHB.17.3: Exchange.sol

152 function _safeTokenTransfer(address token, uint256 amount, address to)

↪→ internal {

153 bytes memory inputData = abi.encodeWithSelector(IERC20Upgradeable.

↪→ transfer.selector, to, amount);

154

155 (, bytes memory data) = safe.executeWallet(token, inputData);

156

50

157 // bool returned by executeWallet is already checked

158 if (!(data.length == 0 abi.decode(data, (bool)))) revert

↪→ ErrorLibrary.TransferFailed();

159 }

SHB.17.4: VelvetSafeModule.sol

41 function executeWallet(

42 address handlerAddresses,

43 bytes calldata encodedCalls

44) public onlyOwner returns (bool isSuccess, bytes memory data) {

45 (isSuccess, data) = execAndReturnData(handlerAddresses, 0,

↪→ encodedCalls, Enum.Operation.Call);

46 if (!isSuccess) revert ErrorLibrary.CallFailed();

47 }

SHB.18 MissingArray Length Check

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The contract has an issue in its _addFeed function where it does not check if the lengths of

the input arrays base, quote, and aggregator are equal. This can result in a revert of the

transaction if the aggregator array is shorter than the base or quote arrays, or it can re-

sult in skipping elements from the longest array if the base or quote arrays are longer than

the aggregator array.

51

Files Affected:

SHB.18.1: PriceOracle.sol

45 function _addFeed(

46 address[] memory base,

47 address[] memory quote,

48 AggregatorV2V3Interface[] memory aggregator

49) public onlyOwner {

50 for (uint256 i = 0; i < base.length; i++) {

51 if (aggregatorAddresses[base[i]].aggregatorInterfaces[quote[i]] !=

↪→ AggregatorInterface(address(0))) {

52 revert AggregatorAlreadyExists();

53 }

54 aggregatorAddresses[base[i]].aggregatorInterfaces[quote[i]] =

↪→ aggregator[i];

55 }

56 emit addFeed(block.timestamp, base, quote, aggregator);

57 }

Recommendation:

To mitigate this issue, it is recommended to add a check at the beginning of the _addFeed

function to ensure that the lengths of the base, quote, and aggregator arrays are equal. If

they are not equal, the function should revert with an appropriate errormessage. This will

prevent the function from being calledwith arrays of unequal lengths, ensuring that all el-

ements are processed correctly.

Updates

The team resolved the issue by adding a check to the _addFeed function to ensure that the

lengths of the base, quote, and aggregator arrays are equal.

SHB.18.2: PriceOracle.sol

48 function _addFeed(

49 address[] memory base,

52

50 address[] memory quote,

51 AggregatorV2V3Interface[] memory aggregator

52) public onlyOwner {

53 if (!((base.length == quote.length) && (quote.length == aggregator.

↪→ length)))

54 revert ErrorLibrary.IncorrectArrayLength();

55

56 for (uint256 i = 0; i < base.length; i++) {

57 if (aggregatorAddresses[base[i]].aggregatorInterfaces[quote[i]] !=

↪→ AggregatorInterface(address(0))) {

58 revert AggregatorAlreadyExists();

59 }

60 aggregatorAddresses[base[i]].aggregatorInterfaces[quote[i]] =

↪→ aggregator[i];

61 }

62 emit addFeed(block.timestamp, base, quote, aggregator);

63 }

SHB.19 MissingMaximumAmount forUserSuppliedSlippage

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The contract has an issue in its getSlippage function in the PancakeSwapHandler contract

where it does not check for a maximum value of slippage other than 100% (DIVISOR_INT).

This could potentially lead to users setting anexcessively high slippage,which could result

in unfavorable swaps.

53

Files Affected:

SHB.19.1: PancakeSwapHandler.sol

154 function getSlippage(

155 uint256 _amount,

156 uint256 _slippage,

157 address[] memory path

158) internal view returns (uint256 minAmount) {

159 if (!(_slippage < DIVISOR_INT)) {

160 revert ErrorLibrary.SlippageCannotBeGreaterThan100();

161 }

162 uint256 currentAmount;

163 if (path[0] == getETH()) {

164 currentAmount = oracle.getPriceForAmount(path[1], _amount, false);

165 } else if (path[1] != getETH()) {

166 currentAmount = oracle.getPriceForTokenAmount(path[0], path[1],

↪→ _amount);

167 } else {

168 currentAmount = oracle.getPriceForAmount(path[0], _amount, true);

169 }

170 minAmount = currentAmount.mul(DIVISOR_INT.sub(_slippage)).div(

↪→ DIVISOR_INT);

171 }

Recommendation:

To mitigate this issue, it is recommended to add a check in the getSlippage function to

ensure that the user-supplied slippage is less than a maximum amount. This maximum

amount should be set to a reasonable value to protect users from setting an excessively

high slippage.

Updates

The team resolved the issue by adding a safety maxSlippage to ensure that the

user-supplied slippage is reasonable to protect fromsandwich attacks.

54

SHB.19.2: PancakeSwapHandler.sol

154 function getSlippage(

155 uint256 _amount,

156 uint256 _slippage,

157 address[] memory path

158) internal view returns (uint256 minAmount) {

159 if (!(_slippage < DIVISOR_INT)) {

160 revert ErrorLibrary.SlippageCannotBeGreaterThan100();

161 }

162 if (_slippage > maxSlippage) {

163 revert ErrorLibrary.InvalidSlippage();

164 }

165 uint256 currentAmount;

166 if (path[0] == getETH()) {

167 currentAmount = oracle.getPriceForAmount(path[1], _amount, false);

168 } else if (path[1] != getETH()) {

169 currentAmount = oracle.getPriceForTokenAmount(path[0], path[1],

↪→ _amount);

170 } else {

171 currentAmount = oracle.getPriceForAmount(path[0], _amount, true);

172 }

173 minAmount = (currentAmount * (DIVISOR_INT - _slippage)) / (

↪→ DIVISOR_INT);

174 }

SHB.20 Potential Out of Gas Exception Due to Long _tokens

Array

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

55

Description:

The contract has an issue in its initToken and updateTokenList functions where it does not

limit the length of the _tokens array when it is initialized or updated. This could potentially

lead toanOutofGas (OOG)exception if the_tokensarraybecomesexcessively long. There-

fore, a Denial of Service for all the functionalities of the protocol.

Files Affected:

SHB.20.1: IndexSwap.sol

145 function initToken(address[] calldata tokens, uint96[] calldata

↪→ denorms) external virtual onlySuperAdmin {

146 if (tokens.length != denorms.length) {

147 revert ErrorLibrary.InvalidInitInput();

148 }

149 if (_tokens.length != 0) {

150 revert ErrorLibrary.AlreadyInitialized();

151 }

152 uint256 totalWeight = 0;

153 for (uint256 i = 0; i < tokens.length; i++) {

154 address token = tokens[i];

155 uint96 _denorm = denorms[i];

156 IndexSwapLibrary._beforeInitCheck(IIndexSwap(address(this)), token

↪→ , _denorm);

157 _records[token] = Record({lastDenormUpdate: uint40(block.timestamp

↪→), denorm: _denorm, index: uint256(i)});

158 _tokens.push(token);

159

160 totalWeight = totalWeight.add(_denorm);

161 }

162 _weightCheck(totalWeight);

163 emit LOG_PUBLIC_SWAP_ENABLED();

164 }

56

SHB.20.2: IndexSwap.sol

599 function updateTokenList(address[] calldata tokens) external virtual

↪→ onlyRebalancerContract {

600 _tokens = tokens;

601 }

Recommendation:

Tomitigate this issue, it isrecommendedtoaddacheck in the initTokenandupdateTokenList

functions to ensure that the length of the _tokensarray doesnot exceeda certain limit. This

limit should be set to a reasonable value to prevent the array from becoming excessively

long. If the length of the _tokens array exceeds this limit, the function should revert with

an appropriate errormessage. Thiswill prevent potential Out of Gas (OOG) exceptions and

ensure that the investInFund function can be executed successfully.

Updates

The team resolved the issue by adding a limitation to the size of the _tokens array.

SHB.20.3: IndexSwap.sol

153 function initToken(address[] calldata tokens, uint96[] calldata

↪→ denorms) external virtual onlySuperAdmin {

154 if (tokens.length > _tokenRegistry.getMaxAssetLimit())

155 revert ErrorLibrary.TokenCountOutOfLimit(_tokenRegistry.

↪→ getMaxAssetLimit());

SHB.20.4: IndexSwap.sol

612 function updateTokenList(address[] calldata tokens) external virtual

↪→ onlyRebalancerContract {

613 uint256 _maxAssetLimit = _tokenRegistry.getMaxAssetLimit();

614 if (tokens.length > _maxAssetLimit) revert ErrorLibrary.

↪→ TokenCountOutOfLimit(_maxAssetLimit);

615 _tokens = tokens;

616 }

57

SHB.21 Potential Failure of Off-Chain Investment Due to Dis-

abled Tokens

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The contract has an issue in its swapOffChainTokens function where it checks if the input

token is enabled. If not, the function reverts. This check is performed for all the tokens in

the _tokens array. Therefore, if any of the tokens are not enabled, the investment operation

cannot proceed.

Files Affected:

SHB.21.1: OffChainIndexSwap.sol

247 (balanceInUSD, underlyingIndex) = exchange.swapOffChainTokens(

248 ExchangeData.IndexOperationData(

249 ExchangeData.InputData(

250 inputData.buyAmount,

251 inputData.sellTokenAddress,

252 inputData._offChainHandler,

253 inputData._buySwapData

254),

255 index,

256 underlyingIndex,

257 inputData.protocolFee[i],

258 balanceInUSD,

259 _lpSlippage[i],

260 _buyAmount[i],

261 _tokens[i],

262 msg.sender

58

263)

264);

SHB.21.2: Exchange.sol

590 function swapOffChainTokens(

591 ExchangeData.IndexOperationData memory inputdata

592) external virtual onlyIndexManager returns (uint256, uint256) {

593 IndexSwapLibrary._whitelistAndHandlerCheck(inputdata._token,

↪→ inputdata.inputData._offChainHandler, inputdata.index);

SHB.21.3: IndexSwapLibrary.sol

419 function _whitelistAndHandlerCheck(address _token, address

↪→ _offChainHandler, IIndexSwap index) external {

420 IAssetManagerConfig config = IAssetManagerConfig(index.

↪→ iAssetManagerConfig());

421 if ((config.whitelistTokens() && !config.whitelistedToken(_token)))

↪→ {

422 revert ErrorLibrary.TokenNotWhitelisted();

423 }

424 ITokenRegistry registry = ITokenRegistry(index.tokenRegistry());

425 if (!(registry.isExternalSwapHandler(_offChainHandler))) {

426 revert ErrorLibrary.OffHandlerNotValid();

427 }

428 if (!(registry.isEnabled(_token))) {

429 revert ErrorLibrary.TokenNotEnabled();

430 }

431 }

Recommendation:

Tomitigate this issue, it is recommended to either remove the check forwhether the token

is enabled in the swapOffChainTokens function or ensure that all tokens in the _tokens ar-

ray are enabled. This will prevent the swapOffChainTokens function from reverting due to

disabled tokens and ensure that users can invest as intended.

59

Updates

The team resolved the issue by removing the whitelist check from the _swapOffChainTo-

kens function.

SHB.22 Potential Unrestricted Withdrawals During Pause

State

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

The contract has an issue in its triggerMultipleTokenWithdrawal function where it allows

users to withdraw funds even when the protocol is paused. While the withdrawOffChain

function has the notPaused modifier and checks in the tokenRegistry if the protocol is

paused, the triggerMultipleTokenWithdrawal function does not perform these checks.

Files Affected:

SHB.22.1: OffChainIndexSwap.sol

351 function withdrawOffChain(ExchangeData.ZeroExWithdraw memory inputData

↪→) external virtual nonReentrant notPaused {

352 address user = msg.sender;

353 address withdrawToken = userWithdrawData[user].withdrawToken;

SHB.22.2: OffChainIndexSwap.sol

521 function triggerMultipleTokenWithdrawal() external nonReentrant {

522 // Check if the user has redeemed their tokens

523 if (!userWithdrawData[msg.sender].userRedeemedStatus) {

524 revert ErrorLibrary.TokensNotRedeemed();

525 }

60

Recommendation:

Tomitigate this issue, it is recommended to add the notPausedmodifier to the triggerMul-

tipleTokenWithdrawal function and include a check to verify if the protocol is paused. If the

protocol is paused, the function should revertwith an appropriate errormessage. Thiswill

ensure that withdrawals cannot bemade during a pause state, maintaining the integrity of

the protocol’s operations.

Updates

The teamhasresolved the issuebyremoving thenotPausedmodifier fromthewithdrawOf-

fChain function to ensure a consistent behavior between thewithdrawal functions.

SHB.23 Precision LossWhenDividingOdd Integers by Two

• Severity : LOW

• Status : Fixed

• Likelihood : 2

• Impact : 1

Description:

The contract has a flawwhere itmay lose precisionwhen dividing odd integers by two. This

is because in Solidity, integer division is floor division, meaning that the result of the divi-

sion operation will be the largest integer less than or equal to the exact result. Therefore,

when an odd integer is divided by two, the result will be rounded down, leading to a loss of

precision.

Files Affected:

SHB.23.1: Exchange.sol

186 uint256 swapValue = underlying.length > 1 ? inputData._swapAmount.div(2)

↪→ : inputData._swapAmount;

61

SHB.23.2: Exchange.sol

431 function getSwapVaule(uint256 len, uint256 amount) internal pure returns

↪→ (uint256) {

432 return (len > 1 ? amount.div(2) : amount);

433 }

SHB.23.3: Exchange.sol

686 function validateAmount(uint256 expectedAmount, uint256 userAmount,

↪→ uint256 len) internal pure {

687 uint256 PERCENTIn18Decimal = 10 ** 22;

688 uint256 diff = expectedAmount.div(len).mul(PERCENTIn18Decimal).div(

↪→ userAmount);

689 uint256 diffPercentage = diff < PERCENTIn18Decimal ?

↪→ PERCENTIn18Decimal.sub(diff) : diff.sub(PERCENTIn18Decimal);

690 if (diffPercentage > PERCENTIn18Decimal) {

691 revert ErrorLibrary.InvalidBuyValues();

692 }

693 }

Recommendation:

When dividing an amount by two, consider taking the first amount as the division result by

two, and the second one to be the total amountminus the first one.

Updates

The team resolved the issue by considering the first amount as the division result and the

second one as the rest.

62

SHB.24 Lack of Cross-Contract Reentrancy Protection

• Severity : INFORMATIONAL

• Status : Fixed

• Likelihood : 1

• Impact : 0

Description:

The contract has an issue in its triggerMultipleTokenWithdrawal function where it lacks

protection against cross-contract reentrancy attacks. While the investInFund,

withdrawFund, investInFundOffChain, and redeemTokens functions in the IndexSwap and

OffChainIndexSwap contracts have individual reentrancy guards, there is no single

reentrancy guard spanning the two contracts.

Files Affected:

SHB.24.1: IndexSwap.sol

37 contract IndexSwap is Initializable, ERC20Upgradeable,

↪→ ReentrancyGuardUpgradeable, UUPSUpgradeable, OwnableUpgradeable {

SHB.24.2: OffChainIndexSwap.sol

30 contract OffChainIndexSwap is Initializable, OwnableUpgradeable,

↪→ UUPSUpgradeable, ReentrancyGuardUpgradeable {

Recommendation:

Tomitigate this issue, it is recommendedto implementasinglereentrancyguard thatspans

both the IndexSwapandOffChainIndexSwapcontracts. Thiswill ensure that reentrancyat-

tacks cannot bemade across the two contracts if the logic ever gets updated to be vulner-

able to reentrancy attacks.

63

Updates

The teamhas resolved the issue by implementing a cross contract reentrancy guard using

the CommonReentrancyGuard contract.

SHB.25 Off-Chain InvestmentFailureDuetoNon-ZeroProto-

col Fees

• Severity : INFORMATIONAL

• Status : Fixed

• Likelihood : 1

• Impact : 0

Description:

In the OffChainIndexSwap contract, the investInFundOffChain function allows a user to

pass a protocolFee array that signifies the fees to be paid to the protocol. However, if the

user passes any value greater than 0, the investment operation will fail. This is because

the function checks if the balance of the contract in Ether is less than the protocolFee and

the swap call to the ZeroExHandler does not deposit any Ether, therefore the function

revertswith an InsufficientFeeFunds error.

Files Affected:

SHB.25.1: ZeroExHandler.sol

25 function swap(

26 address sellTokenAddress,

27 address buyTokenAddress,

28 uint256 sellAmount,

29 uint256 protocolFee,

30 bytes memory callData,

31 address _to

32) public payable {

64

33 uint256 tokenBalance = IERC20Upgradeable(sellTokenAddress).balanceOf

↪→ (address(this));

34 if (tokenBalance < sellAmount) {

35 revert ErrorLibrary.InsufficientFunds(tokenBalance, sellAmount);

36 }

37 uint256 ethBalance = address(this).balance;

38 if (ethBalance < protocolFee) {

39 revert ErrorLibrary.InsufficientFeeFunds(ethBalance, protocolFee);

40 }

41

42 setAllowance(sellTokenAddress, swapTarget, sellAmount);

43

44 uint256 tokensBefore = IERC20Upgradeable(buyTokenAddress).balanceOf(

↪→ address(this));

45 (bool success,) = swapTarget.call{value: protocolFee}(callData);

46 if (!success) {

47 revert ErrorLibrary.SwapFailed();

48 }

Recommendation:

Consider requiring the protocolFee to be equal to zero.

Updates

The teamhas resolved the issue by removing the unused protocolFee parameter.

65

4 Best Practices

BP.1 RemoveUnnecessary Initializations

Description:

The smart contract unnecessarily initializes variables with their default values. In Solid-

ity, variablesareautomatically initializedwith their default values (e.g., 0 for integers, false

for booleans, etc.) when they are declared. Explicitly initializing these variables with their

default values is redundant and can lead to unnecessary gas costs and code complexity. It

is recommended to remove the unnecessary initializations of variables with their default

values.

Files Affected:

• IndexFactory.sol

• IndexSwap.sol

• Exchange.sol

• IndexSwapLibrary.sol

• OffChainIndexSwap.sol

• AbstractLPHandler.sol

• SlippageControl.sol

• OneInchHandler.sol

• ParaswapHandler.sol

• ZeroExHandler.sol

• RebalanceLibrary.sol

• Rebalancing.sol

• AssetManagerConfig.sol

66

Status - Fixed

BP.2 Ommit Unnecessary Approval of Contract to

Its OwnAddress

Description:

Thecontract unnecessarily approves the contract to its ownaddress. It grants the contract

an allowanceof _amount tokens from its ownbalance. However, a contract already has the

ability to transfer its own tokenswithout needing to grant itself an allowance. This unnec-

essary approval can lead to confusion and potential misuse. It is recommended to remove

the unnecessary approval of the contract to its own address.

Files Affected:

BP.2.1: IndexSwap.sol

217 TransferHelper.safeApprove(_token, address(this), _amount);

Status - Fixed

BP.3 UnnecessaryUseofSafeMath&SafeMathUp-

gradeable Libraries

Description:

The smart contract unnecessarily uses the SafeMath and SafeMathUpgradeable libraries

for arithmetic operations. Starting from Solidity version 0.8.0, the language has built-in

overflow and underflow protection, making the use of these libraries redundant. This can

lead to unnecessary gas costs and code complexity. It is recommended to remove the use

of the SafeMath andSafeMathUpgradeable libraries and rely onSolidity’s built-in overflow

and underflow protection for arithmetic operations. This can be done by simply perform-

ing arithmetic operations normally, without using the SafeMath or SafeMathUpgradeable

functions. Thiswill reduce gas costs and simplify the contract’s code.

67

Files Affected:

All contracts that use SafeMath or SafeMathUpgradeable.

Status - Fixed

BP.4 RemoveUnusedEther Call

Description:

In the IndexSwapcontract, the investInFund functionsendsmsg.value (theamountofEther

sent with the function call) to the exchange contract, and the exchange contract never re-

turns any of it back to the IndexSwap contract. As a result, address(this).balance (the bal-

ance of the IndexSwap contract) will always be zero at the end of the function call, unless

someone sent Ether directly to the contract through the receive function. The last lines of

the function,whichcheck thecontract’s balanceandsends it back to theuser, are therefore

unnecessary and can be removed.

Files Affected:

BP.4.1: IndexSwap.sol

277 // refund leftover ETH to user

278 (bool success,) = payable(_to).call{value: address(this).balance

↪→ }("");

279 // require(success, "Transfer ETH failed");

280 if (!success) {

281 revert ErrorLibrary.ETHTransferFailed();

282 }

68

Status - Fixed

BP.5 Redundant External Call in

OffChainIndexSwapContract

Description:

In the OffChainIndexSwap contract, the _getTokenBalanceInBNB functionmakes an exter-

nal call to the getPriceTokenUSD18Decimals function of the oracle contract. However, the

return value of this call is not used in the function. This is a redundant operation that con-

sumes unnecessary gas and can be removed.

To improve the efficiency of the contract, it is recommended to remove the redundant

external call to getPriceTokenUSD18Decimals. This will reduce the gas cost of the _getTo-

kenBalanceInBNB function andmake the contract code cleaner and easier to understand.

Files Affected:

BP.5.1: OffChainIndexSwap.sol

478 function _getTokenBalanceInBNB(

479 address _token,

480 uint256 _tokenAmount

481) internal view returns (uint256 tokenBalanceInBNB) {

482 oracle.getPriceTokenUSD18Decimals(_token, _tokenAmount);

483 uint256 tokenBalanceInUSD = oracle.getPriceTokenUSD18Decimals(_token

↪→ , _tokenAmount);

484 tokenBalanceInBNB = oracle.getUsdEthPrice(tokenBalanceInUSD);

485 }

69

Status - Fixed

BP.6 Inefficient Loop in _swapTokenToTokens

Function

Description:

In the _swapTokenToTokens function, the vault address is retrieved in each iteration of the

loop. This is inefficientas it consumesunnecessarygas. Thevault addressdoesnotchange

during the loop execution, so it can be retrieved once before the loop starts and then used

in each iteration.

Files Affected:

BP.6.1: Exchange.sol

526 function _swapTokenToTokens(

527 FunctionParameters.SwapTokenToTokensData memory inputData

528) external payable virtual onlyIndexManager returns (uint256

↪→ investedAmountAfterSlippage) {

529 IIndexSwap _index = IIndexSwap(inputData._index);

530 address[] memory _tokens = _index.getTokens();

531 for (uint256 i = 0; i < _tokens.length; i++) {

532 address vault = _index.vault();

533 address _token = _tokens[i];

534 uint256 swapAmount = getSwapAmount(

535 inputData._totalSupply,

536 inputData._tokenAmount,

537 inputData.amount[i],

538 uint256(_index.getRecord(_token).denorm)

539);

70

Status - Fixed

BP.7 Redundant Check inWeight Calculation

Description:

In the loop where weights are being calculated, there is a redundant check for

weightToSwap being equal to zero. This check is unnecessary because it is already

ensured that _newWeights[i] is greater than _oldWeights[i], which means weightToSwap

will always be greater than zero.

Files Affected:

BP.7.1: Rebalancing.sol

150 for (uint256 i = 0; i < tokens.length; i++) {

151 if (_newWeights[i] > _oldWeights[i]) {

152 uint256 weightToSwap = _newWeights[i].sub(_oldWeights[i]);

153 if (weightToSwap == 0) {

154 revert ErrorLibrary.WeightNotGreaterThan0();

155 }

Status - Fixed

BP.8 RemoveUnused Variables and Events

Description:

Throughout the codebase, there are several instances where variables or events are de-

clared but never used. This can lead to confusion for developers reading the code and can

potentiallywastegaswhenthecontract isdeployed. SomeexampleswouldbetheReward-

TokensDistributed event and the rewardTokens.

Files Affected:

71

BP.8.1: Exchange.sol

59 event RewardTokensDistributed(address indexed _index, address indexed

↪→ _rewardToken, uint256 indexed diff);

BP.8.2: TokenRegistry.sol

15 struct TokenRecord {

16 bool primary;

17 bool enabled;

18 address handler;

19 address[] rewardTokens;

20 }

Status - Fixed

72

5 Tests

Results:

→ Tests running for Handler: Venus

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: Venus

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: Alpaca

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

73

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: Alpaca

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: BiSwap

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: BiSwap

X should lend tokens

X return values of deposit should be greater than 0

74

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: ApeSwap-lending

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: ApeSwap-lending

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: ApeSwap-lp

X should lend tokens

75

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: ApeSwap-lp

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: BeefyFinance

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: BeefyFinance

76

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests running for Handler: BeefyFinanceLP

X should lend tokens

X return values of deposit should be greater than 0

X should redeem tokens

X gets underlying asset of the token

X should get token balance of the token holder

X should get the token price in USD

→ Tests forMock Fee

X should revert back if the custodial is true and no address is passed in

_owner

X should revert back if the _custodial is true and threshold is more than

owner length

X Initialize 1st IndexFund Tokens

X Calculate fees should return fee values

X Invest 1BNB into Top10 fund

77

X Invest 2BNB into Top10 fund

X Invest 2BNB into Top10 fund

X Should charge fees for index 1

X Should charge fees for index 1

→ Tests for IndexFactory contract

X should revert back if the custodial is true and no address is passed in

_owner

X should revert back if the _custodial is true and threshold is more than

owner length

X asset manager should create a private transferable fund and make it

non-transferable

X assetmanagershouldbeable tomake thepreviousprivate fund trans-

ferable towhitelisted addresses

X assetmanagershouldbeable toconvert theprevious transferablepri-

vate fund to public

X asset manager should be able to make the previous public fund non-

transferable

X asset manager should not be able to make the previous public fund

transferable to onlywhitelisted addresses

X assetmanager should be able tomake the previous public fund trans-

ferable

X should check Index token nameand symbol

78

X should check ifmodule owner of all fund is exchange contract

X initialize should revert if totalWeights not equal 10,000

X initialize should revert if tokens and denorms length is not equal

X initialize should revert if token notwhitelisted

X Initialize 1st IndexFund Tokens

X Initialize 2nd IndexFund Tokens

X Initialize 3rd IndexFund Tokens

X Initialize 4th IndexFund Tokens

X Owner of vault for 1st fund should be exchangeHandler address

X Owner of vault for 2nd fund should be deployer’s addressess

X Owner of vault for 3rd fund should be exchangeHandler address

X Owner of vault for 4th fund should be exchangeHandler address

X Calculate fees should return fee values

X expect owner to be IndexFactory

X Invest 0.1BNB into Top10 fund should fail for slippage greater than 10

X Invest 0.1BNB into Top10 fund

X Invest 2BNB into Top10 2nd index fund

X Invest 0.1BNB into Top10 3rd index fund

X Invest 0.1BNB into Top10 3rd index fund

X Invest 2BNB into Top10 4th index fund

79

X Invest 2BNB into Top10 4th index fund

X Invest 2BNB into Top10 4th index fund should revert if bnb value is

greater than 0 and investment token is not bnb

X Invest 2BNB into Top10 4th index fund on behalf of addr3 should fail if

user addr3 is notwhitelisted

X Add addr3whitelisted user

X Invest 2BNB into Top10 4th index fund on behalf of addr3

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Add addr1whitelisted user

X non owner should not be able to addwhitelistmanager admin

X owner should be able to add assetwhitelistmanager admin

X owner should not be able to add indexmanager

X owner should not be able to add rebalancingmanager

X nonwhitelistmanager admin should not be able to add assetmanager

X newwhitelistmanager admin should be able to addwhitelistmanager

X owner should be able to addwhitelistmanager

X nonwhitelistmanager should not be able to updatemerkle root

80

X Whitelistmanager should be able to updatemerkle root

X Whitelistmanager should beable to addand removeawhitelisteduser

X non whitelist manager admin should not be able to revoke whitelist

manager

X whitelistmanager admin should be able to revokewhitelistmanager

X Whitelist manager should not be able to add user to whitelist after his

rolewas revoked

X New (addr1)whitelisted user invest 2BNB into Top10 2nd index fund

X New (addr2)whitelisted user invest 2BNB into Top10 2nd index fund

X Nonwhitelisted user invest 2BNB into Top10 2nd index fund should fail

X Should charge fees for index 1

X Should charge fees for index 2

X Management fees for index 3 should be 0

X Invest 0.00001 BNB into Top10 fund should fail

X asset manager should be able to add token which is approved in reg-

istry for all the indexes

X Invest 2BNB into Top10 fund

X Invest 1BNB into Top10 2nd Index fund

X Invest 1BNB into Top10 fund

X Invest 1BNB into Top10 2nd Index fund

X Investment should fail when contract is paused

81

X updateWeights should revert if totalWeights not equal 10,000

X UpdateWeightsandRebalanceshould revert if oneof theweight iszero

X shouldUpdateWeights andRebalance

X shouldUpdateWeights andRebalance for 2nd Index Fund

X shouldUpdateWeights andRebalance for 2nd Index Fund

X shouldUpdateWeights andRebalance

X shouldUpdateWeights andRebalance

X updateTokens should revert if totalWeights not equal 10,000

X updateTokens should revert if token is notwhitelisted

X updateTokens should revert if token is not enabled

X updateTokens should revert if protocol is paused

X updateTokens should revert if swapHandler is not enabled

X NonRebalancing access address calling update function

X update tokens should revert is any two tokens are same

X should update tokens

X print values

X should update tokens

X withdrawal should revertwhen contract is paused

X should unpause

X should pause

82

X should revert unpause

X should unpause

X should update tokens for 2nd Index

X whenwithdraw fundmore then balance

X should fail withdrawwhenbalance falls belowmin investment amount

X should fail withdrawwhenbalance falls belowmin investment amount

X shouldwithdraw fund and burn index token successfully

X shouldwithdraw fund and burn index token successfully

X should withdraw fund and burn index token successfully for account

that has been removed fromwhitelist

X Invest 0.1BNB into Top10 2nd Index fund

X transfer idx for a non transferable portfolio should fail

X transfer idx fromowner to nonwhitelisted account should fail

X transfer idx fromowner to awhitelisted account

X transfer idx fromowner to another account (Index 3)

X transfer idx fromowner to another account (Index 4)

X newowner of idxwithdraws funds from Index 3

X Invest 1BNB into Top10 fund after lastwithdrawal

X withdrawcheck values

X newowner of idxwithdraws funds from Index 4

83

X shouldwithdraw fund and burn index token successfully for 2nd Index

X should withdraw fund and burn index token successfully for account

that received idx

X Invest 2BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 2nd Index fund

X Invest 0.1BNB into Top10 2nd Index fund

X shouldwithdraw tokens directly instead of BNB

X shouldwithdraw tokens directly instead of BNB for 2nd Index

X non owner should not be able to add assetmanager admin

X owner should be able to add assetmanager admin

X non assetmanager admin should not be able to add assetmanager

X newassetmanager admin should be able to add assetmanager

X owner should be able to add assetmanager

X non-owner should be able to pause protocol

X should not upgradeProxy Exchnage ToNewContract for 1st Index

X should protocol pause

X should upgrade Proxy Exchnage To NewContract for 1st Index and 2nd

Index

X should not upgrade ifmsg.sender is not owner

X non owner of indexFactory should not be able to upgrade Exchange

84

X should upgradeProxy IndexSwap ToNewContract for 1st Index

X should upgrade Proxy OffChainIndexSwap To New Contract for 1st In-

dex

X should unpause protocol

X Invest 2BNB into Top10 1st index fund after upgrade

X Invest 2BNB into Top10 1st index fund after upgrade

X should pause protocol

X should upgradeProxy IndexSwap ToNewContract for 2nd Index

X should unpause protocol

X Invest 2BNB into Top10 2nd index fund after upgrade

X Upgrade TokenRegistry

X Upgrade IndexFactory, and not able to create Index

X should unpause index creation and creat index

X should set newcool downperiod

X Invest 2BNB into Top10 2nd index fund after upgrade

X Invest 1BNB into Top10 2nd index fund after upgrade and should no re-

vert

X shouldwithdraw fund and burn index token successfully should fail

X transfer tokens should fail, if cooldownperiod is not passed

X should transfer token and withdraw fund and burn index token

successfully

85

X should fail to create an index with management fee greater than max

fee

X should fail to create an index with management fee greater than max

fee

X Nonassetmanagershouldnotbeable toproposenewmanagement fee

X Assetmanager should propose newmanagement fee

X Assetmanagershouldnotbeable toupdatemanagement feebefore28

days passed

X Non asset manager should not be able to delete proposed new man-

agement fee

X Assetmanagershouldbeabletodeleteproposednewmanagementfee

X Non assetmanager should not be able to updatemanagement fee

X Nonassetmanagershouldnotbeable toproposenewperformancefee

X Assetmanager should propose newperformance fee

X Asset manager should be able to update performance fee before 28

days passed

X Non assetmanager should not be able to delete proposed new perfor-

mance fee

X Assetmanagershouldbeable todeleteproposednewperformancefee

X Non assetmanager should not be able to update performance fee

X Non asset manager should not be able to update the asset manager

treasury

86

X Asset manager should not be able to update the asset manager trea-

sury

X Non assetmanager should not be able to update the velvet treasury

X Assetmanager should be able to update the velvet treasury

X Nonowner should not be able to update protocol slippage

X Owner should not be able to update to a slippagemore than 10

X Owner should not be able to update protocol slippage

→ Tests forMixedIndex -MixedProtocols

X should check Index token nameand symbol

X initialize should revert if totalWeights not equal 10,000

X Initialize should fail if the number of tokens exceed the max limit set

during deployment (current = 15)

X should retrieve the currentmax asset limit from the TokenRegistry

X should update themax asset limit to 10 in the TokenRegistry

X should retrieve the currentmax asset limit from the TokenRegistry

X Initialize should fail if the number of tokens exceed themax limit set by

theRegistry (current = 10)

X Initialize IndexFund Tokens

X should add pid

X should remove pid

87

X assetmanager shouldnot beable toadd tokenwhich isnot approved in

registry

X Invest 0.16 BNBshould not revert , if investing token is not initialized

X Invest 10BUSDshould revert , if investing token is not initialized

X asset manager should be able to add token which is approved in reg-

istry

X Invest 0.1BNB into Top10 fund should fail if LP slippage is invalid

X Invest 0.1BNB into Top10 fund

X Invest 10BUSD into Top10 fund

X Invest 0.00001 BNB into Top10 fund should fail

X Invest 2BNB into Top10 fund

X should return false if both of the token in pool is not bnb

X Invest 1BNB into Top10 fund

X Investment should fail when contract is paused

X updateWeights should revert if totalWeights not equal 10,000

X shouldUpdateWeights andRebalance

X updateTokens should revert if totalWeights not equal 10,000

X owner should be able to add assetmanager

X non owner should not be able to add assetmanager

X newassetmanager should update tokens

X withdrawal should revertwhen contract is paused

88

X should unpause

X should pause

X should revert unpause

X should unpause

X whenwithdraw fundmore then balance

X should fail withdrawwhenbalance falls belowmin investment amount

X should fail withdrawwhenbalance falls belowmin investment amount

(multi asset)

X shouldwithdraw fund and burn index token successfully

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X Invest 1BNB into Top10 fund

X Invest 1BNB into Top10 fund

X shouldwithdraw fund in ETH and burn index token successfully

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into Top10 fund

X shouldwithdraw tokens directly instead of BNB

→ Tests forMixedIndex -MixedContracts

X should check Index token nameand symbol

X initialize should revert if tokens length doesnotmatchdenorms length

89

X initialize should revert if a token address is null

X initialize should revert if a non-approved token is being used for init

X initialize should revert if totalWeights not equal 10,000

X Initialize IndexFund Tokens

X Initialize 2nd IndexFund Tokens

X should confirm that the correct tokens are initialised

X should confirm that the correct tokens are initialised

X non-admin should not be able to call the access control setupRole

function

X admin should be able to call the access control setupRole function

X should update a price Oracle feed

X should not be able to obtain the decimals of a token pair price feed

where aggregator is zero address

X should not be able to add pid if arrray lengths don’tmatch

X should not be able to delete pid if array lengths don’tmatch

X should add pid

X should delete pid

X should fetch the router address of the pancake LPhandler

X should get the swap address from the pancake swap handler

X should check if a token is enabled or not in the registry

X should disable a token in the registry

90

X should reiterate theWETHaddress of the token registry

X should not be able to enable a zero address permitted token in Token-

Registry

X should not be able to enable if empty array is passed to TokenRegistry

X should not be able to enable a tokenwhich is already enabled

X should not be able to enable token in registry if the oracle array length

does notmatch the length of other arrays

X should not be able to enable token in registry if the token array length

does notmatch the length of other arrays

X shouldnotbeable toenable token in registry if thehandlerarray length

does notmatch the length of other arrays

X should not be able to enable token in registry if the reward token array

length does notmatch the length of other arrays

X should not be able to enable token in registry if the reward token array

length does notmatch the length of other arrays

X disable token in registry should fail if zero address is passed

X disable token in registry should fail if token is not enabled at all

X disable token in registry should fail if empty array is passed

X should disable a permitted token in TokenRegistry

X isPermitted function from TokenRegistry should not return output for

zero address

X should update an enabled token’s data in the TokenRegistry

91

X Non-primary tokens should not get enabled on the registry level

X assetmanager shouldnot beable toadd tokenwhich isnot approved in

registry

X assetmanagershouldnotbeable todeleteazeroaddressaspermitted

token

X assetmanager should not be able to delete a non-permitted token

X asset manager should not be able to delete permitted tokens if an

empty array is passed

X isTokenPermitted should not return output for assetmanager config

X Invest 0.1 BNBshould not revert, if investing token is not initialized

X Invest 0.1 BNB in 2nd index

X Invest 1 BNB in 2nd index

X Invest 10BUSDshould not revert, if investing token is not initialized

X assetmanagershouldbeable topermit tokenwhich isapproved inreg-

istry

X should not be able to get underlying of a zero addressWombat lp token

X shouldnot beable toget tokenbalanceof a zeroaddressWombat lp to-

ken

X shouldnot beable toget tokenbalanceof a zeroaddressWombat lp to-

ken holder

X should not be able to get underlying balance of a zero addressWombat

lp token

92

X should not be able to get underlying balance of a zero addressWombat

lp token holder

X should not be able to get token balance of a zero addressAlpaca token

X should not be able to get underlying token of a zero addressAlpaca to-

ken

X should not be able to get underlying balance of a zero address Alpaca

token holder

X should not be able to get underlying balance of a zero address Alpaca

token

X shouldnotbeable togetunderlying tokenofazeroaddressBeefy token

X should not be able to get token balance of a zero addressBeefy token

X should not be able to get underlying balance of a zero address Beefy

moo token

X should not be able to get underlying balance of a zero address Beefy

moo token holder

X should be able to get underlying balance of a Beefy LP token

X should not be able to get underlying token of a non-Venus token via the

Venus handler

X should not be able to get underlying balance of a zero address Venus

token

X should not be able to get underlying balance of a zero address Venus

token holder

X should not be able to get token balance of a zero address Venus token

93

X should not be able to get token balance of a zero address Venus token

holder

X should not be able to get underlying token of a zero address Venus to-

ken

X should add reward token to registry and verify it

X should remove reward token from registry and verify it

X should add reward token to registry and verify it

X should revertwhenadd reward token to registry sending0address to-

ken address

X should revert when add reward token to registry sending 0 address

handler address

X Invest 10BUSD into Top10 fund

X Invest 0.00001 BNB into Top10 fund should fail

X Invest 10BNB into Top10 fund

X Invest 10BNB into Top10 fund

X Investment should fail when contract is paused

X should be able to claim tokens for portfolio tokens

X updateWeights should revert if totalWeights not equal 10,000

X updateweights should revert ifweights andslippagearray lengthdon’t

match

X update weights should revert if slippage array length don’t match the

token count

94

X updateweights should revert if swap handler is not enabled

X shouldUpdateWeights andRebalance

X shouldUpdateWeights andRebalance

X shouldUpdateWeights andRebalance

X updateTokens should revert if totalWeights not equal 10,000

X owner should be able to add assetmanager

X non owner should not be able to add assetmanager

X disableswaphandler in registryshouldnotwork ifhandlerarray length

is 0

X disable swaphandler in registry should not work if the handler is al-

ready disabled

X update tokens should notwork if the protocol is paused

X update tokens should notwork if swaphandler is not enabled

X update tokens should notwork if non-enabled token is being used

X newassetmanager should update tokens

X withdrawal should revertwhen contract is paused

X should unpause

X should pause

X should revert unpause

X should unpause

X whenwithdraw fundmore then balance

95

X should fail withdraw when slippage array length is not equal to index

length

X should fail withdrawwhenbalance falls belowmin investment amount

X should fail withdrawwhenbalance falls belowmin investment amount

(multi asset)

X should fail withdraw fundwhen the output token is not permitted in the

assetmanager config and is notWETH

X should fail withdrawwhen the protocol is paused

X shouldwithdraw fund and burn index token successfully

X Invest 1BNB into Top10 fund

X shouldwithdraw fund in BUSDand burn index token successfully

X Invest 1BNB into Top10 fund

X shouldwithdraw tokens directly instead of BNB

→ Tests for OffChainIndex contract

X Initialize IndexFund Tokens

X should add pid

X Initialize 2nd IndexFund Tokens

X Invest 1 BNB into 1st fund

X Invest 2 BNB into Top10 2nd fund

X Invest 2 BNB into Top10 2nd fund

X Invest 51.8 BUSD in 1st Index fund

96

X Invest 1 BUSD in 1st Index fund should fail (undermin amount)

X Invest 50DOGE in 1st Index fund

X Invest 50DOGE in 2nd Index fund

X Invest 50DOGE should fail, if user input is incorrect in 2nd Index fund

X Invest 1 ETH should fail if user has sentwrong input in 2nd Index fund

X Invest 1 ETH should fail if user tries tomanipulateweight in 2nd Index

X Invest 1 ETH should fail if user has sentwrong input in 1st Index fund

X Invest 1 ETH should fail if user tries tomanipulateweight

X Invest 0.01 BTC in 1st Index fund

X Invest 1 BNB into 1st Top10 fund

X Invest 10 BUSD in 2nd Index fund

X Invest 0.1 BNB in 2nd Index fund

X Invest 1 BNB into 1st Top10 fund

X redeem should fail if a non-permitted and non-WETH token is passed

as the out asset

X shouldwithdrawproperlywith rebalance in between

X Invest 1 BNB into 1st Top10 fund

X should revert if sellToken address length is manupilated and trigger-

multiplewithdrawal

X Invest 1 BNB into 1st Top10 fund

X shouldUpdateWeights andRebalance for 2nd Index

97

X Invest 2 BNB in 2nd Index fund

X Invest 2 BNB in 1st Index fund

X should fail if offchainHandler is not valid

X Invest 1 BNB in 1st Index fund should revert if bnb value is greater than

0 and investment token is not bnb

X withdrawshould fail if user balance falls belowmin amount

X should withdraw fund and burn index token successfully for 1st Index

,Simultaneously for both user

X addr2 should invest using offchain

X addr2 should emergencywithdraw

X owner should invest using offchain

X TriggerMultiple TokenWithdrawal withdraw should fail is protocol is

paused andwork if protocol is unpaused

X Nonowner should not triggerMultiple TokenWithdrawalwithdraw

X Invest 1 BNB into 1st Top10 fund

X Withdraw and triggerMultipleWithdrawal should fail if the protocol is

paused

→ Tests for priceOracle contract

X should revert if aggregator is already added

X shouldrevert if basearray lengthdoesnotmatch the lengthofotherar-

rays

98

X should revert if quote array length does not match the length of other

arrays

X should revert if quote array length does not match the length of other

arrays

X Get ETH/WBNBprice

X Get BTC/ETH price

X Get BUSD/WBNBprice

X Get BTC/USDprice

X Get BTC/USDprice

X Get ETH/USDprice

X Get BUSD/USDprice

X Get DAI/USDprice

X GetWBNB/USDprice

X Get DOGE/USDprice

X Get USD/WBNBprice

X Get BTC/WETHprice

X GetWETH/BTC price

X Get ETH/WETHprice

X GetWETH/ETHprice

X Get DOGE/WETHprice

X GetWETH/DOGEprice

99

X Get USD/DOGEprice

X Get DOGE/wbnb price

X Getwbnb/DOGEprice

X Get doge/wbnb price

X Getwbnb/doge price

X Get DOGEprice in 18 decimals

X Get BUSDprice in 18 decimals

X Get ETH price in 18 decimals

X Get BTC price in 18 decimals

X GetWBNB_BUSDprice in 18 decimals

X Get CAKE_BUSDprice in 18 decimals

X Get CAKE_WBNBprice in 18 decimals

X Get ADA_WBNBprice in 18 decimals

X Get BAND_WBNBprice in 18 decimals

X Get DOT_WBNBprice in 18 decimals

X Get DOGE_WBNBprice in 18 decimals

X Get BSWAP_WBNB_BUSDprice in 18 decimals

X Get BSWAP_BUSDT_BUSDprice in 18 decimals

X Get BSWAP_BUSDT_WBNBprice in 18 decimals

X Get BSWAP_ETH_BTC price in 18 decimals

100

X Get BSWAP_BTC_WBNBprice in 18 decimals

X Get BSWAP_DOGE_WBNBprice in 18 decimals

X Get APESWAP_WBNB_BUSDprice in 18 decimals

X Get APESWAP_ETH_BTCBprice in 18 decimals

X Get APESWAP_ETH_WBNBprice in 18 decimals

X Get APESWAP_USDT_WBNBprice in 18 decimals

X Get APESWAP_DOGE_WBNBprice in 18 decimals

X owner updates the oracleTimeout to 35 hours

X non owner should not be able to update oracleTimeout

→ Tests forMetaAggregator

X Initialize 1st IndexFund Tokens

X Initialize 2nd IndexFund Tokens

X Initialize 3rd IndexFund Tokens

X Initialize 4th IndexFund Tokens

X Initialize 5th IndexFund Tokens

X Initialize 6th IndexFund Tokens

X Initialize 7th IndexFund Tokens

X Initialize 8th IndexFund Tokens

X Invest 0.1BNB into Top10 fund

X Invest 0.1BNB into 5th fund

101

X Invest 1BNB into 6th fund

X Invest 2BNB into index fund

X Invest 2BNB into index fund

X Invest 2BNB into index fund

X Invest 1BNB into Top10 fund

X Invest 1BNB into Top10 2nd Index fund

X Invest 1BNB into 7th Index fund

X Invest 1BNB into 8th index fund

X should revert back if swapHandler is not enabled

X swaps using 1InchProtocol

X revert redeem

X non assetManager should not revert if 15minutes is not passed

X non assetManager should revert if 15minutes is passed

X redeems token for 0x

X swaps reverts if token address iswrong

X swaps reverts if sellAmount iswrong

X swaps reverts if sellAmount iswrong in calldata

X swaps reverts if sellAddress iswrong in calldata

X swaps using 0xProtocol

X swaps using ParaswapProtocol

102

X should revert back if the calldata includes fee and the overall slippage

ismore than 1

X Invest 2BNB into index fund

X should revert back if the calldata includes fee and the overall slippage

ismore than 1

X should revert back if the calldata includes fee and the overall slippage

ismore than 1

X update external handler slippage should fail if value is greater than

MAX_SLIPPAGE

X should update external handler slippage

X should setmax slippage as 0 and disabling slippage checks

X Swaps directly to protocol tokenWBNBandETH

X Swaps directly to protocol token ERC20

X SwapsWBNBdirectly to protocol tokenERC20

X SwapsWBNBdirectly to derivative protocol token ERC20

X Invest 0.1BNB into Top10 fund

X swaps into primary using ZeroExProtocol fromprimary

X swaps into derivative token using oneInchProtocol fromprimary

X swaps into derivative using ZeroExProtocol fromprimary

X swaps into lp tokenreverts ifsellAmount isnotequalusingZeroExPro-

tocol fromprimary

103

X swaps into lp token using ZeroExProtocol fromprimary

X Direct Swap reverts if passed underlying token lengthmore than 1

X Direct Swap reverts if underlying is not same

X Direct Swap reverts if length of tokens are not same

X Direct Swap reverts if length of tokens and sellAmount are not same

X redeemshould revert back if index not paused

X should pause

X redeemshould revert back if token getting redeem is not valid

X should revert back if the buy token is not registered

X should revert back if not redeemed

X should revert back if redeem is called by non assetmanager

X should revertback ifmetaAggregatorSwap iscalledbynonassetman-

ager

X Invest 1BNB into Top10 fund

→ Tests for TimeDependent contract

X Initialize 1st IndexFund Tokens

X Initialize 2nd IndexFund Tokens

X Initialize 3rd IndexFund Tokens

X Initialize 4th IndexFund Tokens

X Invest 1BNB into Top10 fund

104

X Invest 2BNB into Top10 2nd index fund

X Invest 1BNB into Top10 3rd index fund

X Invest 2BNB into Top10 4th index fund

X should revert if the price did not updated formore than 25 hours

X should revert if the price did not updated formore than 25 hours

X should update threshold of the oracle

X Assetmanager should propose newmanagement fee

X Assetmanager should propose newmanagement fee

X Assetmanagershouldbeable toupdatemanagement feeafter 28days

passed

X Assetmanagershouldbeable toupdatemanagement feeafter 28days

passed

X should claim tokens

X should swap reward tokenusingpancakeSwapHandler into derivative

token

X should claim tokens

X should swap reward token using pancakeSwapHandler into LP token

X should claim tokens

X swaps reward token should fail using 0x Protocol if buyToken is not In-

dexToken

X swaps reward token using 0xProtocol

105

X should claim tokens

X should swap reward token using pancakeSwap Handler into WETH

base token

X should claim tokens

X should swap reward token using pancakeSwap Handler into base to-

ken

→ Tests for ZeroEx contract

X Initialize IndexFund Tokens

X should add pid

X should check if off chain handler is enabled or not

X Initialize 2nd IndexFund Tokens

X Invest 1 BNB into Top10 fund

X Invest 1 BNB into Top10 fund

X Invest 1 BNB in first index fund

X Should disable external swap handler

X updateweights should fail if any oneweight is zero

X updateweights should fail if sumofweight is not 10000

X UpdateWeights

X print values after updatingweights to [1000, 2000, 7000]

X should _revert after enable Rebalance(1st Transaction)

X should _revert after externalSell (2nd Transaction)

106

X should updateweights

X Invest 1 BNB into Top10 fund

X Invest 1 BNB into Top10 fund

X Should not update tokens if tokens is not approved

X Should not update tokens if tokens is notwhitelisted

X Should not update if any oneweight is zero

X Should not update if weight is not equal to 10000

X print values before

X ShouldUpdate Tokens

X print values after

X should fail to revert back if all transaction is completed

X nonassetManager shouldnot beable to update portfolio to new tokens

X should update portfolio to new tokens

X should update tokens

X Invest 1 BNB into Top10 fund

X Invest 1 BNB into Top10 fund

X Invest 1 BNB into Top10 fund

X Should add onemore token

X print values after adding onemore token ([3000, 1000, 2000, 4000])

X Invest 1 BNB into Top10 fund

107

X Should remove one token

X Invest 1 BNB into Top10 fund

X Should Update Tokens and replace two tokens for vETH and

MAIN_LP_BUSD

X Invest 1 BNB into Top10 fund

X should fail if we call wrong revert function

X non-assetManager should revert if 15minutes of Pause is passed

X non-assetManager should not be able revert if 15minutes of Pause is

not passed

X it should fail if assetmanager tries to execute 3rd transacton after 1st

621 passing

Coverage:

The code coverage results were obtained by running npx hardhat coverage in the project.

We found the following results :

• Statements Coverage : 96.57%

• BranchesCoverage : 73.81%

• Functions Coverage : 89.74%

• Lines Coverage : 90.43%

108

6 Conclusion

In this audit, we examined the design and implementation of Velvet Capital V2 contract and

discovered several issues of varying severity. Velvet Capital team addressed 22 issues

raised in the initial report and implemented the necessary fixes, while classifying the rest

as a risk with low-probability of occurrence. Shellboxes’ auditors advised Velvet Capital

Team to maintain a high level of vigilance and to keep those findings in mind in order to

avoid any future complications.

109

7 Scope Files

7.1 Audit

Files MD5Hash

contracts/FunctionParameters.sol 74d5b94e912ff4c250210e558c03ae9a

contracts/IndexFactory.sol c4114ce0e631695e49c6db37cadc368d

contracts/vault/VelvetSafeModule.sol 94841e20705158e25da0d06fd66af055

contracts/registry/AssetManagerConfig.sol bbea36e152a646641605a8d97989584b

contracts/registry/TokenRegistry.sol df7da244af7e32cdd41bc3590bad4f45

contracts/rebalance/OffChainRebalance.sol 45713b873d1bcd7576c3c218d8ea9202

contracts/rebalance/RebalanceAggregator.sol 105a31d7cf2011b25ba9a4be87058848

contracts/rebalance/RebalanceLibrary.sol 0e4e63027abe3c59853b8cad8469f164

contracts/rebalance/Rebalancing.sol e948a43187c14d24f3db04f44a668099

contracts/oracle/IPriceOracle.sol 3e946f5f6a22f548cbdb4ab94e38f249

contracts/oracle/PriceOracle.sol aef16301361093574cc54c0d918358e1

contracts/library/ErrorLibrary.sol 244da0dea43f8dd80e510379d6c6a69f

contracts/library/GnosisDeployer.sol 0263333d87c831a53fbd302a8c69a487

contracts/handler/AbstractLPHandler.sol 6f0efcf1602c14353eead7c2abf4af9b

contracts/handler/ApproveControl.sol 9461a1be702de46fb4046e6eea6d2a83

contracts/handler/BaseHandler.sol c78c5785a88e02861a9dbfb98f8e4ba0

contracts/handler/DustHandler.sol 57796d364f26541b19df6ce8d1316f72

110

contracts/handler/ExternalSlippageControl.sol b8203912308b95a4beaeb8e80a38805a

contracts/handler/PancakeSwapHandler.sol 4911d88d3d4df6a72d253d8517367c1b

contracts/handler/SlippageControl.sol 7bb4e0a60b64191e18d453f5b2a7e485

contracts/handler/Wombat/WombatHandler.sol 709f905fbb139307dd6882538c581186

contracts/handler/venus/VenusHandler.sol 86239e0790e0345f98257078efec9ca4

contracts/handler/PancakeSwapLP/PancakeSwapLPHan

dler.sol

0ce767d16ba34711087f385a59e677c2

contracts/handler/libraries/FullMath.sol 1c9d54bfd986d35524095efb0c41f610

contracts/handler/ExternalSwapHandler/OneInchHandle

r.sol

deae9f6b0e8276bf2a17ee38fc479fd7

contracts/handler/ExternalSwapHandler/ParaswapHand

ler.sol

3bf4623632f6428a5170eb594d724559

contracts/handler/ExternalSwapHandler/ZeroExHandler.

sol

708ca75564f785b38166b110ac90b5c6

contracts/handler/ExternalSwapHandler/Helper/Exchan

geData.sol

f372f110cc29b9f254836aecb4d1eec8

contracts/handler/BiSwapLP/BiSwapLPHandler.sol 1204291b2a91a2b6e4319d2dd257c359

contracts/handler/Beefy/BeefyHandler.sol 65c07c6f1de8d5ed0626a0a7d9ff96d2

contracts/handler/Beefy/BeefyLPHandler.sol 9dbe7dc7f4dd3b8822e5f4de4ca79bf3

contracts/handler/ApeSwap/ApeSwapLendingHandler.so

l

071c7e3ea2f86cbceb56949d14eccade

contracts/handler/ApeSwap/ApeSwapLPHandler.sol fbf6dfb96a40e89978755594b45d4227

contracts/handler/alpaca/AlpacaHandler.sol a526de406badf02a5fbc5e7d66060954

contracts/fee/FeeLibrary.sol c347feaa59aa2977c5cf1603bd6cd58d

111

contracts/fee/FeeModule.sol fcccde1d2d57283b08d7c7bda9344318

contracts/core/Exchange.sol 212559cff900fc936166b444d8082795

contracts/core/IndexSwap.sol f9dda9f817fc6dec0ada382f2485c322

contracts/core/IndexSwapLibrary.sol 4e7cd179b5a336d5a93a010336658163

contracts/core/OffChainIndexSwap.sol c84884e133dc787813b36e1d8bf1df02

contracts/access/AccessController.sol a9523257273d905f54b09e89167f4502

7.2 Re-Audit

Files MD5Hash

contracts/FunctionParameters.sol dbaf59b3bf9760eeb80df2900842e9b4

contracts/IndexFactory.sol a99092164c72673fd6ade6f8832a05c9

contracts/vault/VelvetSafeModule.sol b98fbee2e8e6e69dcde20ba7c1cf2486

contracts/registry/AssetManagerConfig.sol c20158049ddfbbd5a801e6a5783a6ad9

contracts/registry/TokenRegistry.sol b32d8aa507a2003fda8e231cc44a23e7

contracts/rebalance/OffChainRebalance.sol 6e5e576f731bc20bb0afe5ddd78ed284

contracts/rebalance/RebalanceAggregator.sol f8bee57f68898b878ea5e8dff589bb55

contracts/rebalance/RebalanceLibrary.sol c2592def84f96455bf5abe96b6c17dfc

contracts/rebalance/Rebalancing.sol b9e8e0b740d1d48fd88026a18167c7a7

contracts/oracle/PriceOracle.sol b799722c01a41b3738ee0d35baeffc19

contracts/oracle/aggregators/AggregatorV3Int

erface.sol

c09b2fc2eb6637f1159df7787b9ee342

112

contracts/oracle/aggregators/UniswapV2LPAg

gregator.sol

b1113349cd57bd71df5c1d25819b068c

contracts/library/ErrorLibrary.sol f1183752d271003baa403fc2e88ceaf0

contracts/library/GnosisDeployer.sol 0263333d87c831a53fbd302a8c69a487

contracts/handler/AbstractLPHandler.sol 6d31149c968acba2570f37b4b2d4ccf2

contracts/handler/ApproveControl.sol 9461a1be702de46fb4046e6eea6d2a83

contracts/handler/BaseHandler.sol 57cef964e92d2125936c455897686d3d

contracts/handler/DustHandler.sol b66055a0fba610a319207a8e6a9b42be

contracts/handler/ExternalSlippageControl.sol 3600b32af41ac1538fb2dc3841b17c0c

contracts/handler/PancakeSwapHandler.sol 119e217c53498de17be466989c171041

contracts/handler/SlippageControl.sol aa6ab9d8729140c50c6f3547d5a2d0f1

contracts/handler/Wombat/WombatHandler.sol 8ab07965ba2c7d4de2d7ef4148077aeb

contracts/handler/venus/VenusHandler.sol ef2ab64047244703901500a04ad9598d

contracts/handler/PancakeSwapLP/PancakeS

wapLPHandler.sol

04dc3f9b2ed413f67bdf480fc6e43ed8

contracts/handler/libraries/FullMath.sol ae17c1a9e0c2a3dab384e0ec6df61744

contracts/handler/ExternalSwapHandler/OneIn

chHandler.sol

0951a3becf608996e4e1d2552318bd40

contracts/handler/ExternalSwapHandler/Paras

wapHandler.sol

401207b58791b7d9318eea6494a21f21

contracts/handler/ExternalSwapHandler/ZeroE

xHandler.sol

52ef9299fac218a9372dcac098c80fc3

contracts/handler/ExternalSwapHandler/Helpe

r/ExchangeData.sol

3fc39414cc12f40bbc03443577846691

113

contracts/handler/BiSwapLP/BiSwapLPHandle

r.sol

12d5307b9d0a766d6946d7d2feb8329f

contracts/handler/BiSwapLP/interfaces/IMaste

rChef.sol

81a12127050bb962576b465abee2cb61

contracts/handler/Beefy/BeefyHandler.sol 498fe730e82fe4c5364294233470c777

contracts/handler/Beefy/BeefyLPHandler.sol 092bebf2b962ad82018d94196abb92bd

contracts/handler/ApeSwap/ApeSwapLending

Handler.sol

5b92c60f32092e8627f53c3386fc5501

contracts/handler/ApeSwap/ApeSwapLPHandl

er.sol

a107e7f490a07a6dc8e72d3c9f807bb6

contracts/handler/alpaca/AlpacaHandler.sol 2700ad95469cc35248cf0a41b47c3a36

contracts/fee/FeeLibrary.sol d062a72c0425b3538c09e8469904d2c8

contracts/fee/FeeModule.sol 838f9806008bcbd2ea8b995e028e19b4

contracts/core/CommonReentrancyGuard.sol 4f08a48517b1fe6064f52bb1270c8d45

contracts/core/Exchange.sol d444d5bdbbf1487a3bd7658ab3deddec

contracts/core/IndexSwap.sol a1e85cee61d9dd5c81b7cc68931a41fc

contracts/core/IndexSwapLibrary.sol 4f11a2629fe9aaacee68a669b9e16010

contracts/core/OffChainIndexSwap.sol 8176291c936290f6f29ddffc13846f08

contracts/access/AccessController.sol 9ebb52b030cac6a92cd628edccdbc9eb

114

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject thatengagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

115

For a Contract Audit, contact us at contact@shellboxes.com

116

mailto:contact@shellboxes.com

	Introduction
	About Velvet Capital
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Potential Over-Minting of Tokens Due to Unchecked Deposited Amount
	StreamingFee Check Can Cause a Denial of Service
	Incorrect Token Price Calculation Leading to Denial of Service
	Inaccuracy in LP Token Price Calculation Due to Decimal Mismatch
	Potential Loss of Index Tokens Due to Lack of Swap Result Update
	Misevaluation of User's Investments in LP Tokens
	Potential Portfolio Imbalance Due to OffChain Swaps
	Bypass of Withdrawal Cooldown Period Restriction
	Flaw in Share Minting Leading to Potential Fund Misappropriation
	Unfair Distribution of Rewards Due to Timing of claimTokens Function Calls
	Griefing Attack in Withdrawal Process
	Hard-coded Slippage Leading to Potential Fund Freeze
	Potential Sandwich Attack Due to Chainlink Oracle Failure
	Lack of Freshness Check for Chainlink Price Feed Data
	Precision Loss in Price Calculation Function
	Mismatch Between _tokenAmount and buyAmounts Array Can Lead to Uninvested Funds
	Unchecked Transfer Return Value
	Missing Array Length Check
	Missing Maximum Amount for User Supplied Slippage
	Potential Out of Gas Exception Due to Long _tokens Array
	Potential Failure of Off-Chain Investment Due to Disabled Tokens
	Potential Unrestricted Withdrawals During Pause State
	Precision Loss When Dividing Odd Integers by Two
	Lack of Cross-Contract Reentrancy Protection
	Off-Chain Investment Failure Due to Non-Zero Protocol Fees

	Best Practices
	Remove Unnecessary Initializations
	Ommit Unnecessary Approval of Contract to Its Own Address
	Unnecessary Use of SafeMath & SafeMathUpgradeable Libraries
	Remove Unused Ether Call
	Redundant External Call in OffChainIndexSwap Contract
	Inefficient Loop in _swapTokenToTokens Function
	Redundant Check in Weight Calculation
	Remove Unused Variables and Events

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

