SHELLBOXES

Velvet Capital V2

Smart Contract Security Audit

Prepared by ShellBoxes
July 17t 2023 - August 7t", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Velvet Capital

Version 10

Classification Public
Scope

Repository Commit Hash

https://github.com/Velvet-Capital/
protocol-v2-public

a7a968ccd39ffedcd372717cd41ce8e155272d2c

Re-Audit

Repository

Commit Hash

https://github.com/Velvet-Capital/
protocol-v2-public

32452f2cff4eae008c59a376952b6d9d21ffc202

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
https://github.com/Velvet-Capital/protocol-v2-public
mailto:contact@shellboxes.com

Contents

1 Introduction

1.1
1.2

About Velvet Capital
Approach &Methodology

1.21 RiskMethodology

2 Findings Overview

2.1
2.2

SUMMANY e e e
KeyFindings

3 Finding Details

SHB.1
SHB.2
SHB.3
SHB.4
SHB.5
SHB.6
SHB.7
SHB.8
SHB.9
SHB.10
SHB.1
SHB.12
SHB.13
SHB.14
SHB.15
SHB.16

SHB.17
SHB.18
SHB.19

Potential Over-Minting of Tokens Due to Unchecked Deposited Amount
StreamingFee Check Can Cause a Denialof Service
Incorrect Token Price Calculation Leading to Denial of Service
Inaccuracy in LP Token Price Calculation Due to Decimal Mismatch
Potential Loss of Index Tokens Due to Lack of Swap Result Update
Misevaluation of User’s InvestmentsinLPTokens
Potential Portfolio Imbalance Due to OffChainSwaps
Bypass of Withdrawal Cooldown Period Restriction
Flaw in Share Minting Leading to Potential Fund Misappropriation
Unfair Distribution of Rewards Due to Timing of claimTokens Function Calls
Griefing Attack in WithdrawalProcess
Hard-coded Slippage Leading to Potential Fund Freeze
Potential Sandwich Attack Due to Chainlink Oracle Failure
Lack of Freshness Check for Chainlink Price FeedData
Precision Loss in Price Calculation Function
Mismatch Between _tokenAmount and buyAmounts Array Can Lead to Un-
investedFunds
Unchecked Transfer ReturnValue
Missing ArrayLengthCheck
Missing Maximum Amount for User Supplied Slippage

SHB.20 Potential Out of Gas Exception Due to Long _tokensArray

SHB.21

Potential Failure of Off-Chain Investment Due to Disabled Tokens

SHB.22 Potential Unrestricted Withdrawals During Pause State

o O o1 o1

~N 3

SHB.23 Precision Loss When Dividing Odd IntegersbyTwo
SHB.24 Lack of Cross-Contract Reentrancy Protection
SHB.25 Off-Chain Investment Failure Due to Non-Zero ProtocolFees

4 BestPractices
BP.1 Remove Unnecessary Initializations
BP.2 OmmitUnnecessary Approval of Contracttolts Own Address
BP.3 Unnecessary Use of SafeMath & SafeMathUpgradeable Libraries
BP.4 RemoveUnusedEtherCall
BP.5 Redundant External Callin OffChainindexSwap Contract
BP.6 Inefficient Loopin_swapTokenToTokens Function
BP.7 RedundantCheckinWeight Calculation
BP.8 Remove UnusedVariablesandEvents

5 Tests
6 Conclusion

7 ScopeFiles
7.1 Audit . . . e
7.2 Re-Audit

8 Disclaimer

66
66
67
67
68
69
70
n
n

73

109

110
110
12

15

1 Introduction

Velvet Capital engaged ShellBoxes to conduct a security assessment on the Velvet Capital
V2 beginning on July 17", 2023 and ending August 7", 2023. In this report, we detail our
methodical approach to evaluate potential security issues associated with the implemen-
tation of smart contracts, by exposing possible semantic discrepancies between the smart
contract code and design document, and by recommending additionalideas to optimize the
existing code. Our findings indicate that the current version of smart contracts can still be
enhanced further due to the presence of many security and performance concerns.
This document summarizes the findings of our audit.

1.1 About Velvet Capital

Velvet Capital is a DeFi protocol that helps people & institutions create tokenized index
funds, portfolios & other financial products with additional yield. The protocol provides all
the necessary infrastructure for financial product development being integrated with
AMMs, Lending protocols and other DeFi primitives to give users a diverse asset
management toolkit.

Issuer Velvet Capital

Website https://www.velvet.capital/
Type Solidity Smart Contract
Documentation Velvet Capital Docs

Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and
implementation, automated testing techniques help to expand the coverage of smart

5

https://www.velvet.capital/
https://docs.velvet.capital/

contracts and can quickly detect code that does not comply with security best practices.

1.2.1 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

o High
S Medium
€
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Summary

The followingis a synopsis of our conclusions from our analysis of the Velvet Capital V2 im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.2 KeyFindings

Throughout the audit, the Velvet Capital team demonstrated commendable professional-
ismand commitment. Theirresponsiveness and comprehensive documentation greatly fa-
cilitated the process. Notably, they placed a high emphasis on security, promptly address-
ing and rectifying the majority of the identified issues. Ingeneral, these smart contracts are
well-designed and constructed, but theirimplementation might be improved by addressing
the discovered flaws, whichinclude ” critical-severity, 6 high-severity, 8 medium-severity,

7 low-severity, 7 informational-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Potential Over-Minting of Tokens Due to CRITICAL Fixed
Unchecked Deposited Amount

SHB.2. StreamingFee Check Can Cause a Denial of CRITICAL Fixed
Service

SHB.3. Incorrect Token Price Calculation Leading to Fixed

Denial of Service

SHB.4. Inaccuracy in LP Token Price Calculation Due Fixed

to Decimal Mismatch

SHB.5. Potential Loss of Index Tokens Due to Lack of
Swap Result Update

SHB.6. Misevaluation of User’'s Investments in LP To-
kens

Fixed

SHB.7. Potential Portfolio Imbalance Due to OffChain
Swaps

Fixed

SHB.8. Bypass of Withdrawal Cooldown Period Re-
striction

Fixed

SHB.9. Flawin Share Minting Leading to Potential Fund
Misappropriation

Fixed

SHB.10. Unfair Distribution of Rewards Due to Timing
of claimTokens Function Calls

Mitigated

SHB.11. Griefing Attack in Withdrawal Process

Acknowledged

SHB.12. Hard-coded Slippage Leading to Potential
Fund Freeze

Fixed

SHB.13. Potential Sandwich Attack Due to Chainlink
Oracle Failure

Acknowledged

SHB.14. Lack of Freshness Check for Chainlink Price
Feed Data

Fixed

SHB.15. Precision Loss in Price Calculation Function

Fixed

SHB.16. Mismatch Between _tokenAmount and
buyAmounts Array Can Lead to Uninvested Funds

Fixed

SHB.17. Unchecked Transfer Return Value

Fixed

SHB.18. Missing Array Length Check

Fixed

SHB.19. Missing Maximum Amount for User Supplied
Slippage

Fixed

Fixed

SHB.20. Potential Out of Gas Exception Due to Long Fixed

_tokens Array

SHB.21. Potential Failure of Off-Chain Investment Due Fixed

to Disabled Tokens

SHB.22. Potential Unrestricted Withdrawals During Fixed

Pause State

SHB.23. Precision Loss When Dividing Odd Integers by Fixed

)

SHB.24. Lack of Cross-Contract Reentrancy Protec- Fixed

tion

SHB.25. O0Off-Chain Investment Failure Due to Non- Fixed

Zero Protocol Fees

3 Finding Details

SHB.1 Potential Over-Minting of Tokens Due to Unchecked

Deposited Amount

. Severity: CRITICAL - Likelihood: 3

- Status: Fixed - Impact: 3

The contract has an issue in its swapOffChainTokens function where it does not check for
the actualdeposited amount of underlyingtokensinaliquidity poolandthe returned amount
to the user. In the swapOffChainTokens function, the user can input arbitrary buyAmounts,
so they can make it appear as if they are depositing a large amount into the vault, but only
a small portion of it will actually go to the vault. The majority will be returned to them as
leftovers. This can lead to the user having minted more tokens than they actually deposited.

Let's set a scenario of a portfolio that has only an LP token for simplicity, where the liquidity
pool is balanced with 100 tokens each side (100 tokenA, 100 tokenB). An attacker can set a
buyAmounts arraythat looks like this [100000000,100]. The exchange will swap the invested
tokenstothe underlying tokens of the pool and deposit this unbalanced allocation of tokens
to the liquidity pool, the liquidity pool will only take 100 tokenA and 100 tokenB and return
100000000 - 100 tokenA to the attacker, then the index tokens will be minted based on the
swap results which do not take into account the returned dust. This results in the attacker
having more index tokens than the actual deposit.

10

Files Affected:

ss (amountA, amountB, liquidity) = router.addLiquidity(

59 address(underlying[0]),

60 address (underlying[1]),

6 _amount [0],

62 _amount [1],

63 1,

64 1,

65 _to,

66 block.timestamp

67)

68

6 _returnDust (

70 underlying[0],

7 user // we need to pass user from exchange
72)

73 _returnDust (

T underlying[1],

75 user // we need to pass user from exchange
76)

174 balanceInUSD = _offChainInvestment(_initData, _tokenAmount,

— _lpSlippage) ;

25 function _offChainInvestment (

236 ExchangeData.ZeroExData memory inputData,
237 uint256 _tokenAmount,
238 uint266[] calldata _lpSlippage

239) internal virtual returns (uint256 balanceInUSD) {

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

uint256 underlyingIndex = O;
balanceInUSD = 0;
address[] memory _tokens = index.getTokens();
uint256[] memory _buyAmount = calculateSwapAmountsOffChain(index,
< _tokenAmount) ;
for (uint256 i = 0; i < _tokens.length; i++) {
// Get the handler contract for the current token
// Perform off-chain token swap using the exchange contract
(balanceInUSD, underlyingIndex) = exchange.swapOffChainTokens(
ExchangeData. IndexOperationData(
ExchangeData. InputData (
inputData.buyAmount,
inputData.sellTokenAddress,
inputData._offChainHandler,
inputData._buySwapData
)
index,
underlyinglIndex,
inputData.protocolFee[i],
balanceInUSD,
_1pSlippagel[i],
_buyAmount [i],
_tokens[i],

msg.sender

Consider relying on the fair LP price of the returned liquidity by the AMM pair to calculate

the amount of index tokens to be minted.

12

The team has resolved the issue by relying on the value of the minted LP tokens calculated
using a custom aggregator that uses the fair lp price formula.

SHB.2 StreamingFee Check Can Cause a Denial of Service

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed « Impact: 3

The function calculateStreamingFee checks if _lastCharged is less than block.timestamp.
If _lastCharged is not less than block.timestamp, the function reverts with
ErrorLibrary.NoTimePassedSinceLastCharge(). This check effectively enforces that fees
are taken only once per block. Any subsequent calls within the same block will revert,
leading to a denial of service.

An attacker can exploit this vulnerability by front-running all calls to the protocol that takes
fees with an operation that calls the calculateStreamingFee function. This will cause all
subsequent calls within the same block to revert, effectively causing a denial of service for
allthose calls.

SHB.2.1: FeeLibrary.sol

nm function calculateStreamingFee (

18 uint256 _totalSupply,
19 uint256 _vaultBalance,
20 uint256 _lastCharged,
2 uint256 _fee

13

2) public view returns (uint256 tokensToMint) {

2 if (_lastCharged >= block.timestamp) {

2 revert ErrorLibrary.NoTimePassedSinceLastCharge();

2 }

2

2 uint256 feeForIntervall = _vaultBalance.mul(_fee).mul(block.

< timestamp.sub(_lastCharged)).div(365 days).div(

28 TOTAL _WEIGHT

2 J;

30

3 tokensToMint = feeForIntervall.mul(_totalSupply).div(_vaultBalance.
— sub(feeForIntervall));

2 }

Consider returning zero if _lastCharged is equal to the block.timestamp to avoid causing a
denial of service when the fee was already taken by the protocol for that interval.

Theteam hasresolved theissue by removing the revert statementand returning zero when
_lastChargedisequaltotheblock.timestamptoavoid DoSwhenatransaction was executed
inthe same block.

SHB.2.2: FeeLibrary.sol

2 function calculateStreamingFee(

13 uint256 _totalSupply,

i uint256 _vaultBalance,

15 uint256 _lastCharged,

1 uint256 fee

i) public view returns (uint256 tokensToMint) {
18 if (_lastCharged >= block.timestamp) {

19 return tokensToMint;

20 }

14

21 uint256 feeForIntervall = (_vaultBalance * (_fee) * (block.timestamp
< - _lastCharged)) / (365 days) / (TOTAL_WEIGHT);

22

23 tokensToMint = (feeForIntervall * _totalSupply) / (_vaultBalance -
— feeForIntervall);

2

25 return tokensToMint;

26 }

SHB.3 Incorrect Token Price Calculation Leading to Denial of

Service
- Severity: [HIGH - Likelihood: 2
- Status: Fixed « Impact: 3

The contract uses Chainlink price feeds to calculate the price of a token in multiple han-
dlers. This price is then used to validate the LP slippage. However, when calculating the
price of a token, the contract specifies 1e18 as an input to represent one token. While this
is correct for tokens that have a decimal of 18, it will yield an extremely incorrect price for
tokens that have a different decimal count. This can lead to a denial of service (DoS), as the
slippage protection will always revert the deposit and redeem transactions due to the in-
correct price calculation. It is worth mentioning that deposit and redeem are used in in-
vestments and withdrawals for each non primary token that uses an LP handler, therefore
this will cause a DoS inthe main functionalities of the protocol. The same issue existsin the
AbstractLPHandler for calculating the liquidity fair value price.

15

SHB.3.1: ApeSwapLPHandler.sol

75

76

71

78

79

80

81

82

83

84

85

86

87

function deposit(
address _lpAsset,
uint256[] memory _amount,
uint256 _lpSlippage,
address _to,
address user
) public payable override {
address[] memory t = getUnderlying(_lpAsset);
uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
— 1000000000000000000) ;
uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
_deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,
— pl, p2);

emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);

SHB.3.2: ApeSwapLPHandler.sol

92

94

95

96

97

98

function redeem(FunctionParameters.RedeemData calldata inputData) public
— override {
address[] memory t = getUnderlying(inputData._yieldAsset);
uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
— 1000000000000000000) ;
uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
_redeem(inputData, routerAddress, pl, p2);
emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

< inputData._amount, inputData._to, inputData.isWETH);

[

SHB.3.3: BiSwapLPHandler.sol

73 function deposit(

74 address _lpAsset,

75 uint256[] memory _amount,
76 uint256 _1pSlippage,

77 address _to,

78 address user

79) public payable override {

80 address[] memory t = getUnderlying(_lpAsset);
8l uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
— 1000000000000000000) ;
82 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
83 _deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,
— pl, p2);
84 emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);
I

SHB.3.4: BiSwapLPHandler.sol

9o function redeem(FunctionParameters.RedeemData calldata inputData) public

< override {

91 address[] memory t = getUnderlying(inputData._yieldAsset);
92 uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
< 1000000000000000000) ;
9 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
9% _redeem(inputData, routerAddress, pl, p2);
95 emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

— inputData._amount, inputData._to, inputData.isWETH);
96 }

SHB.3.5: PancakeSwapLPHandler.sol

7 function deposit(

75 address _lpAsset,

17

7 uint256[] memory _amount,

7 uint256 _lpSlippage,
78 address _to,
79 address user

s) public payable override {

8l address[] memory t = getUnderlying(_lpAsset);
82 uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
— 1000000000000000000) ;
83 uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
84 _deposit(_lpAsset, _amount, _lpSlippage, _to, address(router), user,
— pl, p2);
85 emit Deposit(block.timestamp, msg.sender, _lpAsset, _amount, _to);
8

SHB.3.6: PancakeSwapLPHandler.sol

¢ function redeem(FunctionParameters.RedeemData calldata inputData) public

<~ override {

92 address[] memory t = getUnderlying(inputData._yieldAsset);
93 uint pl = _oracle.getPriceTokenUSD18Decimals(t[0],
— 1000000000000000000) ;
9% uint p2 = _oracle.getPriceTokenUSD18Decimals(t[1],
— 1000000000000000000) ;
95 _redeem(inputData, routerAddress, pl, p2);
% emit Redeem(block.timestamp, msg.sender, inputData._yieldAsset,

< inputData._amount, inputData._to, inputData.isWETH);
97 }

SHB.3.7: AbstractLPHandler.sol

25 function _calculatePrice(address t, address priceOracle) internal view

— returns (uint256) {

206 address[] memory underlying = _getUnderlyingTokens(t);
207 LPInterface _asset = LPInterface(t);
208 (uint reserveO, uint reservel,) = _asset.getReserves();

18

209

210

2n

212

213

214

215

216

217

uint totalSupply = _asset.totalSupplyQ;

uint price0 = IPriceOracle(priceQOracle).getPriceTokenUSD18Decimals(

— underlying[0], ONE_ETH);

uint pricel = IPriceQOracle(priceOracle).getPriceTokenUSD18Decimals(

— underlying[1], ONE_ETH);

uint256 sqrtReserve = Babylonian.sqrt(reserve0.mul(reservel));
uint256 sqrtPrice = Babylonian.sqrt(price0.mul(pricel));
uint256 price = sqrtReserve.mul (sqrtPrice) .mul(2).div(totalSupply)

return price;

I

To mitigate thisissue, itisrecommended to dynamically calculate the token representation

based on the token’s decimal count. Instead of hard-coding 1e18 as the representation of

one token, the contract should call the decimals() function on the token contract to get the

correct decimal count. This will ensure that the price calculation is accurate for all tokens,

regardless of their decimal count.

Theteam hasresolved theissue by adding a functionin the PriceOracle contract that calcu-

lated the price of one token taking into account the decimals.

SHB.3.8: PriceOracle.sol

224

225

226

227

228

229

/ *%

* O@notice Returns the latest token price for a specific token for 1
— unit

* Oparam _base base asset address

* @return amountOut The latest USD token price of the base token in
— 18 decimals

*/

function getPriceForOneTokenInUSD(address _base) public view returns

< uint256 amountOut) {

(

19

230 uint256 amountIn = 10 ** IERC20MetadataUpgradeable(_base) .decimals()
—
231 amountOut = getPriceTokenUSD18Decimals(_base, amountIn);

232 }

SHB.4 Inaccuracyin LP Token Price Calculation Due to Deci-

mal Mismatch

- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact: 3

The _calculatePrice function gets the price of a full token (1 x decimal) from Chainlink, but
the reserves returned by the pair are in units of tokens (already multiplied by the decimal).

This mismatch in decimal representation leads to aninaccuracy when calculating the price
of an LP token.

SHB.4.1: AbstractLPHandler.sol

2s function _calculatePrice(address t, address priceOracle) internal view

< returns (uint256) {

206 address[] memory underlying = _getUnderlyingTokens(t);

207 LPInterface _asset = LPInterface(t);

208 (uint reserveO, uint reservel,) = _asset.getReserves();

209 uint totalSupply = _asset.totalSupply();

210 uint price0 = IPriceQOracle(priceOracle).getPriceTokenUSD18Decimals(

— underlying[0], ONE_ETH);
2n uint pricel = IPriceQOracle(priceQracle).getPriceTokenUSD18Decimals(

— underlying[1], ONE_ETH);

20

212

213 uint256 sqrtReserve = Babylonian.sqrt(reserve0.mul (reservel));

214 uint256 sqrtPrice = Babylonian.sqrt(price0.mul(pricel));

215 uint256 price = sqrtReserve.mul (sqrtPrice) .mul(2).div(totalSupply);
216 return price;

m }

To mitigate this issue, itis recommended to align the decimal representation when getting
the prices from Chainlink and when getting the reserves from the pair. This can be achieved
by getting the price of one unit of the token instead of a full token. This would ensure that the
calculation is performed with the correct decimal representation, leading to an accurate
price calculation for LP tokens.

The team has resolved the issue by calculating the value of the minted LP tokens using a
custom aggregator that uses the fair LP price formula.

SHB.5 PotentialLossofIndex TokensDuetoLack of Swap Re-

sult Update
. Severity: [HIGH - Likelihood: 3
- Status: Fixed - Impact: 2

The _swapTokenToToken function does not update the swapResult array if both tokenln and
tokenOut are primary tokens. This leads to the function returning zero as a default value,

21

which will not get added to investedAmountAfterSlippage. The investedAmountAfterSlip-

page is used to calculate the index tokens to be minted. This could potentially lead to a loss

of index tokens for the user.

SHB.5.1: Exchange.sol

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

if (!tokenInfoIn.primary !tokenInfoOut.primary) {
if (inputData._isInvesting) {

swapResult = _swapTokenToTokenInvest (inputData, tokenInfoIn.enabled)
—
} else {
swapResult = _swapTokenToTokenWithdraw(inputData) ;
b
} else {

IHandler handler = IHandler (tokenInfoOut.handler);
swapResult = new uint256[] (1) ;
if (isWETH(tokenOut, address(handler))) {
address to = inputData._to;
if (inputData._isInvesting) {
to = address(this);
}
_swapTokenToETH(
FunctionParameters.SwapTokenToETHData (
tokenln,
to,
inputData._swapHandler,
inputData._swapAmount,
inputData._slippage,
inputData._lpSlippage
)
¥
if (inputData._isInvesting) {

uint256 balance = address(this) .balance;

22

385 IWETH(tokenQOut) .deposit{value: balance}();

356 if (inputData._to != address(this)) {

357 IWETH(tokenOut) . transfer (inputData._to, balance);
358 }

359 }

o } else {

361 swapResult [0] = IndexSwapLibrary.transferAndSwapTokenToToken (
362 tokenln,

363 swapHandler,

364 inputData._swapAmount,

365 inputData._slippage,

366 tokenOut,

367 inputData._to,

368 tokenInfoln.enabled

369);

m o}

o}

sz return swapResult;

Tomitigate thisissue, itisrecommended to update the swapResult array with the amount of
ETH returned fromthe _swapTokenToETH functionif both tokenln and tokenOut are primary
tokens.

The team has resolved the issue by assigning the _swapTokenToETH return value to the
swapResult.

SHB.5.2: Exchange.sol

us } else {

345 IHandler handler = IHandler(tokenInfoOut.handler);
us swapResult = new uint256[](1);

347 if (isWETH(tokenOut, address(handler))) {

23

348 address to = inputData._to;

) if (inputData._isInvesting) {
350 to = address(this);

351 }

352 swapResult = _swapTokenToETH(
353 FunctionParameters.SwapTokenToETHData (
354 tokenln,

355 to,

356 inputData._swapHandler,

357 inputData._swapAmount,

358 inputData._slippage,

359 inputData._lpSlippage

360)

361);

SHB.6 Misevaluation of User's Investmentsin LP Tokens

- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact: 3

The investInFund mis-evaluates the value of a user’s investment in liquidity provider (LP)
tokens. The project implements index tokens that represent the investor’s portfolio, a part
of which can be LP tokens from providing liquidity to a pair. The project calculates the value
ofthese LP tokens based onthe underlyingtokens’value in USD. However, this may not yield
accurate results due to the phenomenon known as impermanent loss, which LP providers
typically experience when the price of one of the tokens in the pair shifts in the market.

In a scenario where the price of one of the tokens in the pair shifts significantly, the cal-
culated value of the LP tokens based on the underlying tokens’ value in USD may not ac-
curately reflect the user’s investment. This can lead to a misrepresentation of the user’s
portfolio value, potentially causing financial losses to the protocol.

24

SHB.6.1: IndexSwap.sol

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

investedAmountAfterSlippage = _exchange._swapTokenToTokens{value: msg.
— valuel}(
FunctionParameters.SwapTokenToTokensData(
address(this),
_token,
investData._swapHandler,
msg.sender,
_amount,
totalSupply (),
amount,
slippage,
investData._lpSlippage
)
¥

uint256 investedAmountAfterSlippageBNB = _oracle.getUsdEthPrice(
— investedAmountAfterSlippage) ;

if (investedAmountAfterSlippageBNB <= 0) {

revert ErrorLibrary.ZeroFinalInvestmentValue();
}
uint256 tokenAmount;
uint256 _totalSupply = totalSupply();
tokenAmount = getTokenAmount (_totalSupply,

— investedAmountAfterSlippageBNB, vaultBalanceInBNB);

if (tokenAmount <= 0) {

revert ErrorLibrary.ZeroTokenAmount() ;
b

_mintInvest(_to, tokenAmount);

SHB.6.2: OffChainIndexSwap.sol

25

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

// Perform off-chain investment
balanceInUSD = _offChainInvestment(_initData, _tokenAmount, _lpSlippage)

c% ;

// Calculate the invested amount in BNB after slippage
uint256 investedAmountAfterSlippageBNB = oracle.getUsdEthPrice(
< balanceInUSD) ;

// Ensure the final invested amount is not zero
require(investedAmountAfterSlippageBNB > 0, "final invested amount is

— zero");

// Calculate the vault balance in BNB
uint256 vaultBalanceBNB = oracle.getUsdEthPrice(vaultBalance);

// Calculate the token amount to be minted
uint256 tokenAmount;
uint256 _totalSupply = index.totalSupply();
if (_totalSupply > 0) {

tokenAmount = IndexSwapLibrary. mintShareAmount (

— investedAmountAfterSlippageBNB, vaultBalanceBNB, _totalSupply);

} else {

tokenAmount = investedAmountAfterSlippageBNB;

// Ensure the token amount is not zero

require (tokenAmount > O, "token amount is 0");

// Mint investment tokens to the specified address

index.mintInvest(_to, tokenAmount) ;

SHB.6.3: Exchange.sol

577

578

for (uint256 j = 0; j < swapResult.length; j++) {
investedAmountAfterSlippage = investedAmountAfterSlippage.add(

26

579 oracle.getPriceTokenUSD18Decimals (underlying[j], swapResult[j])
580)

s}

To mitigate this issue, it is recommended to use the getFairLpPrice function, which calcu-
lates the fair price of an LP token based on the real reserves.

Theteamresolvedtheissue byrelyingonthe value of the minted LP tokens calculated using
a custom aggregator, which uses the fair LP price formula.

SHB.7 Potential Portfolio Imbalance Due to OffChain Swaps

o Severity: - - Likelihood: 3

. Status: Fixed - Impact: 2

The protocol allows for off-chain exchanges, such as the Ox protocol, to generate transac-
tions that will swap a user’s tokens into the portfolio tokens. The contract allows the user
toinput the buyAmounts for how the invested amount will be allocated in the portfolio, then
it calculates these amounts using the denorms and verifies them to be close to the inputted
values by the user, the actual verification passes if the user supplied amounts are at most
50% smaller than the expected amounts, and will always pass if we pass more than the ex-
pected amount.

Therefore, the contract allows for a high difference between the inputted values and the
calculated values. This can allow a user to capitalize on this discrepancy to unbalance the
portfolio, putting it at a different risk level from the one intended by the portfolio creator.

27

In addition to that, this can result in triggering multiple rebalancing transactions to get
the portfolio back to the rebalanced state. It's worth mentioning that this can resultin a sig-
nificant loss to the investors due to the fees that will be spent in the rebalancing process.

An attacker can exploit this flaw by inputting buyAmounts that significantly differ from the
calculated values. This can allow the attacker to unbalance the portfolio, potentially putting
it at a different risk level from the one intended by the portfolio creator. This could lead to
financial losses for other users.

SHB.7.1: Exchange.sol

86 function validateAmount(uint256 expectedAmount, uint256 userAmount,

< uint256 len) internal pure {

687 uint256 PERCENTIn18Decimal = 10 ** 22;

688 uint256 diff = expectedAmount.div(len) .mul (PERCENTIn18Decimal) .div(
— userAmount) ;

689 uint256 diffPercentage = diff < PERCENTIn18Decimal 7
— PERCENTIn18Decimal.sub(diff) : diff.sub(PERCENTIn18Decimal);

690 if (diffPercentage > PERCENTIn18Decimal) {

691 revert ErrorLibrary.InvalidBuyValuesQ);

692 }

693}

Tomitigatethisissue,itisrecommendedtoimplement astricter verification mechanism for
the userAmountinputted by the user. This couldinvolve reducing the allowed difference be-
tween the inputted values and the calculated values. This would reduce the risk of causing
an unbalance to the portfolio.

28

The team has resolved the issue by adjusting the amount validation process to require a

reasonable difference between the expectedAmount and userAmount.

SHB.7.2: Exchange.sol

769 function validateAmount (uint256 expectedAmount, uint256 userAmount,

< uint256 underlyinglen) internal pure {

770 uint256 exceptedRangeDecimal = 10 ** 6;

I uint256[] memory diff = new uint256[] (underlyinglen);

m2

773 if (underlyinglen > 1) {

774 uint amountO = expectedAmount / underlyinglen;

75 uint amountl = expectedAmount - amountO;

776

77 diff[0] = getdiff (userAmount, amountO, exceptedRangeDecimal);

778

779 diff[1] = getdiff (userAmount, amountl, exceptedRangeDecimal);

780 } else {

781 diff[0] = getdiff (userAmount, expectedAmount, exceptedRangeDecimal
=)3

782 }

783 for (uint256 j = 0; j < underlyinglen; j++) {

784 if (diff[j] > exceptedRangeDecimal) {

785 revert ErrorLibrary.InvalidBuyValues();

786 }

787 }

w8}

SHB.7.3: Exchange.sol

813 function getdiff(uint _userAmount, uint _calcAmount, uint

— _exceptedRangeDecimal) internal pure returns (uint) {

814 return
815 _userAmount > calcAmount
816 7 (_userAmount * _exceptedRangeDecimal) / _calcAmount

29

817 : (_calcAmount * _exceptedRangeDecimal) / _userAmount;

818 }

SHB.8 Bypass of Withdrawal Cooldown Period Restriction

. Severity: [HIGH - Likelihood: 3

- Status: Fixed - Impact: 2

The investinFund function allows an investor to specify a _to address that will receive the
mintedindex tokens and updates this address’s timestamp torestrictit frominstantly with-
drawing, forcing it to wait for the cooldown period to end. However, this restriction can be
easily bypassed bytransferringtheindextokenstoanotheraddress and withdrawing using
that address. This is possible when transferableToPublic is enabled in the config or when
twousers collaborateinthe case whentransferableistrueandthose users are whitelisted.

Any user can exploit this issue by transferring the index tokens to another address and
withdrawing using that address, effectively bypassing the withdrawal restriction. This can
allow the attacker to withdraw their funds before the cooldown period ends.

SHB.8.1: IndexSwap.sol

%6 _mintInvest(_to, tokenAmount);

267 lastInvestmentTime[_to] = block.timestamp;

SHB.8.2: IndexSwap.sol

s00 function withdrawFund(FunctionParameters.WithdrawFund calldata initData)

< external nonReentrant notPaused {

30

301 IndexSwapLibrary.checkCoolDownPeriod(lastInvestmentTime [msg.sender],

— _tokenRegistry);

SHB.8.3: IndexSwap.sol

ns function _beforeTokenTransfer(address from, address to, uint256 amount)

< internal virtual override {

16 super._beforeTokenTransfer(from, to, amount);

1y IndexSwapLibrary._beforeTokenTransfer(from, to, _iAssetManagerConfig
—)

ns }

SHB.8.4: IndexLibrary.sol

507 function beforeTokenTransfer(address from, address to,

— IAssetManagerConfig config) external {

508 if (from == address(0) to == address(0)) {

509 return;

510 }

51 if (!(config.transferableToPublic() (config.transferable() &&
— config.whitelistedUsers(to)))) {

512 revert ErrorLibrary.Transferprohibited();

513 }

s}

Tomitigate thisissue,itisrecommended toimplementamechanismthattracks the original
addressthatreceivedthe mintedindextokens and applies the withdrawal restriction to any
subsequent addresses that receive the tokens. This would prevent users from being able
to bypass the withdrawal restriction by transferring the tokens to another address. Alter-
natively, the contract could disallow transfers of index tokens during the cooldown period,
ensuring that the withdrawal restriction cannot be bypassed.

31

Theteamresolvedtheissue byaddingacheckinthe _beforeTokenTransferthatrequiresthe

cooldown period to pass before allowing the token transfer.

SHB.8.5: IndexSwap.sol

114 function _beforeTokenTransfer(address from, address to, uint256 amount

<) internal virtual override {

15 super._beforeTokenTransfer(from, to, amount);

6 if (from == address(0) to == address(0)) {

7 return,

8 }

1y if (

120 ! (_iAssetManagerConfig.transferableToPublic()

121 (_iAssetManagerConfig.transferable() && _iAssetManagerConfig.
— whitelistedUsers(to)))

122) {

123 revert ErrorLibrary.Transferprohibited();

124 }

125 checkCoolDownPeriod (from) ;

s }

SHB.8.6: IndexSwap.sol

78 function checkCoolDownPeriod(address _user) public view {

789 if (getRemainingCoolDown(_user) > 0) {

790 revert ErrorLibrary.CoolDownPeriodNotPassed() ;
791 }

w2}

kY.

SHB.? FlawinShareMinting Leadingto Potential Fund Misap-

propriation

- Severity: [IEBIEN - Likelihood: 1

- Status: Mitigated - Impact: 3

The protocol swaps the invested funds into the tokens of the portfolio, then calculates the
USD value of the swap results, and converts them to BNB to decide how many index tokens
will be minted for the user. These price conversions to USD and then to BNB are done using
Chainlink price feeds.

However, there can be a delay in the reflection of the actual market value of the tokens
in the Chainlink price feeds. This delay can be exploited by a user who withdraws and then
re-deposits after the value goes up in the feed, ending up with more index tokens while de-
positing the same initial amount. This means the balance didn't change, but the user got
more index tokens, allowing them to withdraw a part of someone else’s funds. The same
can be appliedif the BNB's value increases in USD.

An attacker can exploit this flaw by monitoring the market for tokens that are going up in
value. They can then withdraw their funds and re-deposit after the value goes up in the
Chainlink price feed, effectively getting more index tokens while depositing the same initial
amount. This allows them to withdraw a part of someone else’s funds, leading to financial
losses for other users.

33

SHB.9.1: Exchange.sol

sm for (uint256 j = 0; j < swapResult.length; j++) {

578 investedAmountAfterSlippage = investedAmountAfterSlippage.add(

579 oracle.getPriceTokenUSD18Decimals (underlying[j], swapResult[j])
580);

se1 }

SHB.9.2: IndexSwap.sol

255 uint256 investedAmountAfterSlippageBNB = _oracle.getUsdEthPrice(
— investedAmountAfterSlippage) ;

256

27 if (investedAmountAfterSlippageBNB <= 0) {

258 revert ErrorLibrary.ZeroFinalInvestmentValue();

29}

%0 uint256 tokenAmount;

2 uint256 _totalSupply = totalSupply();

22 tokenAmount = getTokenAmount(_totalSupply,
— investedAmountAfterSlippageBNB, vaultBalanceInBNB);

%3 if (tokenAmount <= 0) {

2wt revert ErrorLibrary.ZeroTokenAmount() ;

25}

2% _mintInvest(_to, tokenAmount);

Tomitigatethisissue,itisrecommendedto add adelay betweenthe withdrawaland the next
invest call to prevent an attacker from exploiting the delay between the real world price and
the Chainlink price feeds, or implement a mechanism that locks the withdrawal and invest
functions during periods of significant price volatility to reduce the risk.

34

The team mitigated the issue by removing the USD to BNB conversion to calculate the
minted amount, this action reduces the likelihood of the attack since it will only be
applicable on price changes of the portfolio tokens in USD.

SHB.10 Unfair Distribution of Rewards Due to Timing of claim-

Tokens Function Calls

- Severity: [HIEBIENN - Likelihood: 2

- Status: Acknowledged - Impact: 2

TheclaimTokens functioninthe IndexSwap contract, which canbe called by anyone, collects
rewards from handlers that require a method call to harvest the rewards. These rewards
are then added to the vault. If this function is not invoked before any investinFund call, a
new depositor could potentiallyreceive ashare ofthe rewardsthat were generated by other
investors. Similarly, if it is not called before withdrawFund calls, the withdrawing investor

might not receive their share of the rewards generated by their capital. This can lead to an
unfair distribution of rewards.

SHB.10.1: IndexSwap.sol

e1s function claimTokens(address[] calldata tokens) external nonReentrant {

679 _exchange.claimTokens (IIndexSwap (address(this)), tokens);

680 }

SHB.10.2: Exchange.sol

20 function claimTokens(IIndexSwap _index, address[] calldata _tokens)

— external onlyIndexManager {

35

121 for (uint256 i = 0; i < _tokens.length; i++) {

122 address _token = _tokens[i];

123 IHandler handler = IHandler(getTokenInfo(_token).handler);
124

125 (bytes memory callData, address callAddress) = handler.

— getClaimTokenCalldata(_token, _index.vault());

126

127 if (callAddress != zeroAddress) {

128 safe.executeWallet (callAddress, callData);

129 }

130 }

11

132 emit TokensClaimed(block.timestamp, address(_index), _tokens);
B3}

Consider implementing a mechanism that automatically distributes rewards to investors
in proportion to their shares at the time of each deposit or withdrawal. This would ensure
that rewards are fairly distributed and cannot be manipulated by timing transactions.

Theteamacknowledgedtheissue, statingthatthe asset manager will be specifying the har-
vest time and frequency in the strategy (frontend).So, users can consider this information
to choose their investment time.

SHB.11 Griefing Attack in Withdrawal Process

- Severity: [HIEBIEN - Likelihood: 1

- Status: Fixed « Impact:3

36

The contract has a vulnerability in its withdrawal function that allows an attacker to grief
any investor who wants to withdraw their funds. The contract enforces a duration between
the investor’s last deposit and their withdrawal. However, when investing, an investor can
specify a _to address that will receive the shares and also update its lastinvestmentTime
to block.timestamp. This means an attacker can invest the minimum amount of shares for
another investor, updating their lastinvestmentTime and effectively preventing them from

withdrawing their funds.

An attacker can exploit this issue by front-running the withdrawal transaction of any in-
vestor byinvesting the minimum amount of shares then, updating their lastInvestmentTime
and effectively preventing them from withdrawing their funds. This can be done repeatedly,
causing continuous grief to the investors.

SHB.11.1: IndexSwap.sol

% _mintInvest(_to, tokenAmount);

27 lastInvestmentTime[to] = block.timestamp;

SHB.11.2: IndexSwap.sol

s300 function withdrawFund(FunctionParameters.WithdrawFund calldata initData)
< external nonReentrant notPaused {
301 IndexSwapLibrary.checkCoolDownPeriod(lastInvestmentTime [msg.sender],

< _tokenRegistry);

To mitigate this issue, it is recommended to separate the logic for updating the lastinvest-
mentTime from the investment function. This way, only the investor themselves can update
their lastinvestmentTime when they make an investment. Alternatively, a validation could

37

be added to ensure that the _to address in the investment function matches msg.sender,
preventing an attacker from updating the lastinvestmentTime of another investor.

The team has resolved the issue by removing the option for users to invest on behalf of
someone else. In addition to that, The cooldown period was adapted to take into account
the invested amount.

SHB.12 Hard-coded Slippage Leading to Potential Fund

Freeze

- Severity: [HIEDIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The contract uses a hardcoded slippage of 10% in the Onelnch, Paraswap, and ZeroEx han-
dlers. While this is generally a good practice to avoid losing value in MEV scenarios, it can
become anissueinvolatile market conditions. Ifthe price of atoken fluctuates by more than
10% within a short period, transactions may fail due to the slippage limit, effectively leading
to afreeze of funds.

In a highly volatile market, the price of a token can fluctuate by more than 10% within a
short period. If auser tries to perform a transaction during this period, the transaction may
faildue tothe hard-coded slippage limit of 10%. This can effectively lead to a freeze of funds,
as users may be unable to perform transactions until the market stabilizes.

SHB.12.1: ExternalSlippageControl.sol

2 function getSlippage(uint256 _amount) internal view returns (uint256

< minAmount) {

38

3 minAmount = _amount.mul (HUNDRED PERCENT.sub(maxSlippage)) .div(
< HUNDRED PERCENT) ;
w }

SHB.12.2: ExternalSlippageControl.sol

40 function validateSwap(uint priceSellToken, uint priceBuyToken)

<3 internal view {

& if (maxSlippage !'= 0) {

42 if (priceBuyToken < getSlippage(priceSellToken)) {
43 revert ErrorLibrary.InvalidAmount();

44 }

s }

w ¥

To mitigate this issue, itis recommended to implement a dynamic slippage mechanism in-
stead of using a hard-coded value. This mechanism could adjust the slippage limit based
on market conditions, allowing for higher slippage in more volatile markets and lower slip-
page in more stable markets. This would provide a balance between protecting users from
MEV and ensuring that transactions can still be performed in volatile market conditions.

The team acknowledged the issue, stating that they'll be adapting the maxSlippage in
volatile market conditions.

SHB.13 Potential Sandwich Attack Due to Chainlink Oracle

Failure

- Severity: [IEBIEN - Likelihood: 1

- Status: Fixed « Impact: 3

39

The AMM handlers rely on Chainlink to determine the value of a token and calculate the mi-
nAmount depending on the user-supplied slippage. However, if the Chainlink oracle fails to
deliver the value, the user will add/remove liquidity with no slippage protection. This could
potentially expose the user to a sandwich attack, where an attacker manipulates the token
pair to their extract MEV.

Auser callsinvestinFund from IndexSwap toinvest. The tokensinvested will be swapped to
various other tokens using a swapHandler. The slippage calculation is done in the getSlip-
page function and it uses Chainlink to get prices. However, if Chainlink fails, the currentA-
mount will be set to 0, and so the investor will enter the trade with no slippage protection.
This could expose investors to a sandwich attack, where an attacker manipulates the price
of the token to their advantage, potentially leading to financial losses.

SHB.13.1: SlippageControl.sol

39 function _validateLPSlippage/(

40 uint _amountA,

a uint _amountB,

42 uint _priceA,

43 uint _priceB,

44 uint _lpSlippage

45) internal view {

46 require(maxSlippage >= _1pSlippage, "Invalid LP Slippage!");
“ uint amountDivision = _amountA.mul (10 *x 18).div(_amountB);
48 uint priceDivision = _priceB.mul(10 ** 18).div(_pricel);

49 uint absoluteValue = O;

50 if (amountDivision > priceDivision) {

51 absoluteValue = amountDivision.sub(priceDivision);

52 } else {

53 absoluteValue = priceDivision.sub(amountDivision);

40

54 }
55 if (absoluteValue.mul(10 ** 2) > (_lpSlippage.mul(10 ** 18))) {

56 revert ErrorLibrary.InvalidAmount();

To mitigate thisissue, it is recommended to add a check if the returned value is 0, the func-
tion should revert with an appropriate error message or use a default value for slippage.
This will ensure that the user always enters the trade with slippage protection, preventing
potential sandwich attacks.

The team resolved the issue by reverting the transaction when the price feed returns zero
as aprice.

41

SHB.13.2: PriceOracle.sol

% function latestRoundData(address base, address quote) internal view

< returns (int256) {

97 (

98 ,

99 /*uint80 roundID*/

100 int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80

< answeredInRound*/,

101 s

102 uint256 updatedAt,

103

104) = aggregatorAddresses[base] .aggregatorInterfaces[quote].
< latestRoundData() ;

105

106 if (updatedAt + oracleExpirationThreshold < block.timestamp) {

107 revert ErrorLibrary.PriceOracleExpired();

108 }

109

110 if (price == 0) {

1 revert ErrorLibrary.PriceOraclelInvalid();

n }

13

i return price;

ns }

SHB.14 Lack of Freshness Check for Chainlink Price Feed
Data

- Severity: [HIEBIENI - Likelihood:1

- Status: Fixed - Impact: 3

42

The contractuses Chainlink price feedsto getthe latest price of tokens. However, it does not
check the updatedAt value returned by the latestRoundData function. According to Chain-
link's documentation, consumers are encouraged to check the updatedAt value to ensure
they are receiving fresh data.

Ifthe updatedAtvalueis notchecked, the contract could potentially use stale or outdated
price data, which could lead to incorrect calculations and potential loss of funds.

SHB.14.1: PriceOracle.sol

90 function latestRoundData(address base, address quote) internal view

< returns (int256) {

” (

92 s

9 /*uint80 roundIDx*/

9% int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80

< answeredInRound*/,

%)

%)

97

98) = aggregatorAddresses[base] .aggregatorInterfaces[quote].
< latestRoundData();

99 return price;

w0}

The contract should check the updatedAt value returned by the latestRoundData function
and revert the transactionif the datais not fresh.

43

Theteamresolved theissue by requiring the updatedAt to not be olderthanaoracleExpira-
tionThreshold.

SHB.14.2: PriceOracle.sol

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

12

n3

N4

15

function latestRoundData(address base, address quote) internal view

< returns (int256) {
(

b

/*uint80 roundID*/
int256 price /*uint startedAt*/ /*uint timeStamp*/ /*uint80
< answeredInRound*/,

uint256 updatedAt,

) = aggregatorAddresses[base] .aggregatorInterfaces[quote].

< latestRoundData();
if (updatedAt + oracleExpirationThreshold < block.timestamp) {

revert ErrorLibrary.PriceOracleExpired();

if (price == 0) {

revert ErrorLibrary.PriceOracleInvalid();

return price;

44

SHB.15 Precision Loss in Price Calculation Function

- Severity: _ - Likelihood: 2

- Status: Fixed « Impact: 2

The contract has a precision loss issue in the getPriceTokenUSD18Decimals function. The
contract performs division before multiplication (Decimal Normalization), which resultsin

a loss of precision. Specifically, the price will lose all the decimal points received by the
price feed.

SHB.15.1: PriceOracle.sol

m function getPriceTokenUSD18Decimals(address _base, uint256 amountIn)

— public view returns (uint256 amountOut) {

180 uint256 output = uint256(getPrice(_base, Denominations.USD));

181 uint256 decimalChainlink = decimals(_base, Denominations.USD);

182 IERC20MetadatalUpgradeable token = IERC20MetadataUpgradeable(_base) ;
183 uint8 decimal = token.decimals();

184

185 uint256 diff = uint256(18) .sub(decimal) ;

186

187 amountOut = output.mul (amountIn).div(10 ** decimalChainlink) .mul(10

— *xx diff);
188 }

To mitigate this issue, it is recommended to rearrange the operations to perform multipli-
cation before division. This can help prevent the loss of precision. The corrected line of

43

code would be: amountOut = output.mul(amountin).mul(10 ** diff).div(10 ** decimalChain-

link); This change ensures that the multiplication operationis performed before the division

operation, which increases the value of the amountOut, thus preserving precision.

The team resolved the issue by changing the operation order and performing multiplica-

tions before divisions.

SHB.15.2: PriceOracle.sol

197

198

199

200

201

202

203

204

206

function getPriceTokenUSD18Decimals(address _base, uint256 amountIn)

< public view returns (uint256 amountOut) {
uint256 output = uint256(getPrice(_base, Denominations.USD));
uint256 decimalChainlink = decimals(_base, Denominations.USD);
IERC20MetadataUpgradeable token = IERC20MetadataUpgradeable(_base) ;

uint8 decimal = token.decimals();

uint256 diff = uint256(18) - (decimal);

amountOut = (output * amountIn * (10 **x diff)) / (10 *x*

< decimalChainlink);

SHB.16 Mismatch Between _tokenAmount and buyAmounts

Array Can Lead to Uninvested Funds

- Severity: |HIEBIEN - Likelihood: 2

- Status: Fixed « Impact: 2

46

The smart contract has an issue in its investinFundOffChain function where the
_tokenAmount parameter, which represents the amount the user wants to invest, does not
necessarily match the actual amounts invested as specified in the buyAmounts array. This
mismatch can lead to a situation where some funds remain uninvested in the contract.

Aninvestor may be exposed to this issue by unintentionally providing a _tokenAmount that
is larger than the total of the buyAmounts array. This would result in some funds remaining
uninvested in the contract. An attacker could then potentially withdraw these uninvested
funds from the contract using the same issue, effectively withdrawing funds from the con-
tract.

SHB.16.1: OffChainindexSwap.sol

w if (msg.value > 0) {

142 if ('(WETH == _initData.sellTokenAddress)) {
143 revert ErrorLibrary.InvalidToken();

Wt

145 _tokenAmount = msg.value;

146 IndexSwapLibrary. checkInvestmentValue(_tokenAmount,
— iAssetManagerConfig);

147

148 // Deposit ETH into WETH

s IWETH(WETH) .deposit{value: msg.valuel}();

1

=

150
151 // Transfer the WETH to index operations contract

1

a

2 IWETH(WETH) . transfer(address(exchange), _tokenAmount);
w3 » else {

154 // Check permission and balance for the sell token

155 IndexSwapLibrary._checkPermissionAndBalance (

156 _initData.sellTokenAddress,

47

157

158

159

160

161

162

163

164

165

166

167

168

_tokenAmount,
iAssetManagerConfig,

msg.sender

);

// Get the token balance in BNB

uint256 tokenBalanceInBNB = _getTokenBalanceInBNB(_initData.
— sellTokenAddress, _tokenAmount);

IndexSwapLibrary. checkInvestmentValue (tokenBalanceInBNB,
— iAssetManagerConfig) ;

// Transfer the sell token from the sender to index operations
— contract
TransferHelper.safeTransferFrom(_initData.sellTokenAddress, msg.sender

— , address(exchange), _tokenAmount) ;

Tomitigatethisissue, itisrecommendedtoreturnthe uninvested fundsifthe _tokenAmount

was more than the required amount to get the buyAmounts.

The team resolved the issue by returning the unused funds to the investor using the retur-

nUninvestedFunds function.

SHB.16.2: Exchange.sol

790

1

792

793

794

/ *%

* Onotice This function is used to return any uninvested funds left
< in the Exchange handler during OffChain/Onchain investment

* Q@param _token Address of the deposit token whose undeposited dust
— is left stuck in the contract

* O@param _to Address where the uninvested funds have to be sent

*/

48

795

796

797

798

799

800

801

802

803

804

805

function returnUninvestedFunds(address _token, address _to, uint256
< _balance) internal {
if (_token != WETH) {
TransferHelper.safeTransfer(_token, _to, _balance);
} else {
(bool success,) = payable(_to).call{value: _balance}("");
if (!success) {
revert ErrorLibrary.ETHTransferFailed();
}
}
emit returnedUninvestedFunds(_to, _token, _balance, block.timestamp)

= ;

SHB.17 Unchecked Transfer Return Value

- Severity: [EOW - Likelihood: 1

. Status: Fixed - Impact: 2

The contract has an issue in its _safeTokenTransfer function, where it does not check the

return value of a token transfer. The function generates transfer calldata to the Gnosis

Safe vault to execute, but the Safe only checks the transaction status without verifying if

the function returns a boolean and whether it’s true or not. This could potentially lead to

unnoticed failed transfers.

SHB.17.1: Exchange.sol

e function _safeTokenTransfer(address token, uint256 amount, address to)

< internal {

49

159 bytes memory inputData = abi.encodeWithSelector (IERC20Upgradeable.
— transfer.selector, to, amount);

160
11 safe.executeWallet (token, inputData);

162 }

SHB.17.2: VelvetSafeModule.sol

7 function executeWallet(

38 address handlerAddresses,

39 bytes calldata encodedCalls

%) public onlyOwner returns (bool isSuccess) {

4 isSuccess = exec(handlerAddresses, 0, encodedCalls, Enum.Operation.
— Call);

42 require(isSuccess, "Call failed");

s}

Tomitigatethisissue,itisrecommendedtoaddacheck,ifthereisareturnvalue ofthe token
transferinthe _safeTokenTransfer function, thenitshould be requiredtobetruetoavoidthe
case where the transfer fails silently.

Theteamresolvedtheissue byaddingacheckifthe transfer functionreturnsabooleanrep-
resenting the status.

SHB.17.3: Exchange.sol

152 function _safeTokenTransfer (address token, uint256 amount, address to)
— internal {
153 bytes memory inputData = abi.encodeWithSelector (IERC20Upgradeable.
— transfer.selector, to, amount);

154

155 (, bytes memory data) = safe.executeWallet(token, inputData);

156

50

157 // bool returned by executeWallet is already checked
158 if (!(data.length == 0 abi.decode(data, (bool)))) revert

— ErrorLibrary.TransferFailed();
159 }

SHB.17.4: VelvetSafeModule.sol

@ function executeWallet(
42 address handlerAddresses,
43 bytes calldata encodedCalls

s) public onlyOwner returns (bool isSuccess, bytes memory data) {
45 (isSuccess, data) = execAndReturnData(handlerAddresses, O,
— encodedCalls, Enum.Operation.Call);

46 if (!isSuccess) revert ErrorLibrary.CallFailed();

47 }

SHB.18 Missing Array Length Check

- Severity: - - Likelihood: 1

- Status: Fixed « Impact: 2

The contract has anissue inits _addFeed function where it does not check if the lengths of
the input arrays base, quote, and aggregator are equal. This can result in a revert of the
transaction if the aggregator array is shorter than the base or quote arrays, or it can re-
sultin skipping elements from the longest array if the base or quote arrays are longer than
the aggregator array.

91

SHB.18.1: PriceOracle.sol

45 function _addFeed(

46 address[] memory base,

4 address[] memory quote,

48 AggregatorV2V3Interface[] memory aggregator

4) public onlyOwner {

50 for (uint256 i = 0; i < base.length; i++) {

51 if (aggregatorAddresses[base([i]].aggregatorInterfaces[quotel[i]] !=
— AggregatorInterface(address(0))) {

52 revert AggregatorAlreadyExists();

53 }

54 aggregatorAddresses[base[i]] .aggregatorInterfaces[quote[i]] =
— aggregator[i];

55 }

56 emit addFeed(block.timestamp, base, quote, aggregator);

s}

To mitigate this issue, it is recommended to add a check at the beginning of the _addFeed
function to ensure that the lengths of the base, quote, and aggregator arrays are equal. If
they are not equal, the function should revert with an appropriate error message. This will
prevent the function from being called with arrays of unequal lengths, ensuring that all el-
ements are processed correctly.

The team resolved the issue by adding a check to the _addFeed function to ensure that the
lengths of the base, quote, and aggregator arrays are equal.

SHB.18.2: PriceOracle.sol

s function _addFeed(

4 address[] memory base,

92

50 address[] memory quote,

51 AggregatorV2V3Interface[] memory aggregator

2) public onlyOwner {

53 if (!((base.length == quote.length) && (quote.length == aggregator.

— length)))

54 revert ErrorLibrary.IncorrectArrayLength();

55

56 for (uint256 i = 0; i < base.length; i++) {

57 if (aggregatorAddresses[base[i]].aggregatorInterfaces[quote[i]] !=
— AggregatorInterface(address(0))) {

58 revert AggregatorAlreadyExists();

59 }

60 aggregatorAddresses[base[i]] .aggregatorInterfaces[quote[i]] =
— aggregator[i];

6 }

62 emit addFeed(block.timestamp, base, quote, aggregator);

e}

SHB.19 Missing Maximum Amount for User Supplied Slippage

- Severity: [EOW - Likelihood: 1

- Status: Fixed « Impact: 2

The contract has anissueinits getSlippage function in the PancakeSwapHandler contract
where it does not check for a maximum value of slippage other than 100% (DIVISOR_INT).
This could potentially lead to users setting an excessively high slippage, which could result
inunfavorable swaps.

33

SHB.19.1: PancakeSwapHandler.sol

w4 function getSlippage(

155 uint256 _amount,

156 uint256 _slippage,

157 address[] memory path

158) internal view returns (uint256 minAmount) {

159 if (!(_slippage < DIVISOR_INT)) {

160 revert ErrorLibrary.SlippageCannotBeGreaterThan100();

161 }

162 uint256 currentAmount;

163 if (path[0] == getETH()) {

164 currentAmount = oracle.getPriceForAmount(path[1], _amount, false);
165 } else if (path[1] !'= getETH(O)) {

166 currentAmount = oracle.getPriceForTokenAmount (path[0], path[1],

< _amount) ;

167 } else {

168 currentAmount = oracle.getPriceForAmount(path[0], _amount, true);
169 }

10 minAmount = currentAmount.mul (DIVISOR_INT.sub(_slippage)).div(

< DIVISOR_INT);
17 }

To mitigate this issue, it is recommended to add a check in the getSlippage function to
ensure that the user-supplied slippage is less than a maximum amount. This maximum
amount should be set to a reasonable value to protect users from setting an excessively
high slippage.

The team resolved the issue by adding a safety maxSlippage to ensure that the
user-supplied slippage is reasonable to protect from sandwich attacks.

94

SHB.19.2: PancakeSwapHandler.sol

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

m

172

173

174

function getSlippage(

uint256 _amount,
uint256 _slippage,
address[] memory path
internal view returns (uint256 minAmount) {
if (!(_slippage < DIVISOR_INT)) {

revert ErrorLibrary.SlippageCannotBeGreaterThan100();
}
if (_slippage > maxSlippage) {

revert ErrorLibrary.InvalidSlippage();
}
uint256 currentAmount;
if (path[0] == getETH()) {

currentAmount = oracle.getPriceForAmount(path[1], _amount, false);
} else if (path[1] !'= getETH()) {

currentAmount = oracle.getPriceForTokenAmount (path[0], path[1],

< _amount) ;

} else {

currentAmount = oracle.getPriceForAmount(path[0], _amount, true);
}
minAmount = (currentAmount * (DIVISOR_INT - _slippage)) / (

< DIVISOR_INT);

SHB.20 Potential Out of Gas Exception Due to Long _tokens

Array
. Severity: [EOW - Likelihood:1
- Status: Fixed « Impact: 2

95

The contract has anissue in its initToken and updateTokenList functions where it does not

limit the length of the _tokens array when it is initialized or updated. This could potentially

leadtoan Out of Gas (00G) exceptionifthe _tokens array becomes excessively long. There-

fore, a Denial of Service for all the functionalities of the protocol.

SHB.20.1: IndexSwap.sol

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

function initToken(address[] calldata tokens, uint96[] calldata
< denorms) external virtual onlySuperAdmin {
if (tokens.length != denorms.length) {
revert ErrorLibrary.InvalidInitInputQ);
}
if (_tokens.length != 0) {
revert ErrorLibrary.AlreadyInitialized();
}
uint256 totalWeight = O;
for (uint256 i = 0; i < tokens.length; i++) {
address token = tokens[i];
uint96 _denorm = denorms[i];
IndexSwapLibrary._beforeInitCheck(IIndexSwap(address(this)), token
— , _denorm);
_records [token] = Record({lastDenormUpdate: uint40(block.timestamp
<), denorm: _denorm, index: uint256(i)});

_tokens.push(token) ;

totalWeight = totalWeight.add(_denorm) ;

}
_weightCheck(totalWeight) ;
emit LOG_PUBLIC_SWAP_ENABLED();

56

SHB.20.2: IndexSwap.sol

s99 function updateTokenList(address[] calldata tokens) external virtual
— onlyRebalancerContract {

600 _tokens = tokens;

601 }

Tomitigatethisissue,itisrecommendedtoaddacheckintheinitTokenandupdateTokenList
functions to ensure that the length of the _tokens array does not exceed a certain limit. This
limit should be set to a reasonable value to prevent the array from becoming excessively
long. If the length of the _tokens array exceeds this limit, the function should revert with
an appropriate error message. This will prevent potential Out of Gas (00G) exceptions and
ensure that the investinFund function can be executed successfully.

The teamresolved the issue by adding a limitation to the size of the _tokens array.

SHB.20.3: IndexSwap.sol

153 function initToken(address[] calldata tokens, uint96[] calldata
— denorms) external virtual onlySuperAdmin {
154 if (tokens.length > _tokenRegistry.getMaxAssetLimit())
155 revert ErrorLibrary.TokenCountOutOfLimit (_tokenRegistry.
— getMaxAssetLimit());

SHB.20.4: IndexSwap.sol

sz function updateTokenList(address[] calldata tokens) external virtual
— onlyRebalancerContract {
613 uint256 _maxAssetlLimit = _tokenRegistry.getMaxAssetLimit();
614 if (tokens.length > maxAssetLimit) revert ErrorLibrary.
— TokenCountOutOfLimit(_maxAssetLimit);
615 _tokens = tokens;

616 }

57

SHB.21 Potential Failure of Off-Chain Investment Due to Dis-

abled Tokens
- Severity: [EOW| - Likelihood: 1
. Status: Fixed - Impact: 2

The contract has an issue in its swapOffChainTokens function where it checks if the input
token is enabled. If not, the function reverts. This check is performed for all the tokens in
the _tokens array. Therefore, if any of the tokens are not enabled, the investment operation
cannot proceed.

SHB.21.1: OffChainIndexSwap.sol

27 (balanceInUSD, underlyingIndex) = exchange.swapOffChainTokens (

248 ExchangeData.IndexOperationData(
29 ExchangeData. InputData(

250 inputData.buyAmount,

251 inputData.sellTokenAddress,
252 inputData._offChainHandler,
253 inputData._buySwapData

254),

255 index,

256 underlyingIndex,

257 inputData.protocolFee[i],

258 balanceInUSD,

259 _1pSlippagel[i],

260 _buyAmount [i],

261 _tokens[i],

262 msg.sender

58

263)

%4) ;

SHB.21.2: Exchange.sol

590 function swapOffChainTokens (

591 ExchangeData.IndexOperationData memory inputdata

s2) external virtual onlyIndexManager returns (uint256, uint256) {

593 IndexSwapLibrary. whitelistAndHandlerCheck(inputdata._token,
— inputdata.inputData._offChainHandler, inputdata.index);

SHB.21.3: IndexSwapLibrary.sol

9 function _whitelistAndHandlerCheck(address _token, address
— _offChainHandler, IIndexSwap index) external {
420 IAssetManagerConfig config = IAssetManagerConfig(index.

— iAssetManagerConfig());

4 if ((config.whitelistTokens() && !config.whitelistedToken(_token)))
— {

422 revert ErrorLibrary.TokenNotWhitelisted();

23 }

424 ITokenRegistry registry = ITokenRegistry(index.tokenRegistry());

425 if (!(registry.isExternalSwapHandler (_offChainHandler))) {

426 revert ErrorLibrary.0ffHandlerNotValid();

21 }

428 if (!(registry.isEnabled(_token))) {

429 revert ErrorLibrary.TokenNotEnabled();

30 }

@}

To mitigate this issue, it is recommended to either remove the check for whether the token
is enabled in the swapOffChainTokens function or ensure that all tokens in the _tokens ar-
ray are enabled. This will prevent the swapOffChainTokens function from reverting due to
disabled tokens and ensure that users can invest as intended.

59

The team resolved the issue by removing the whitelist check from the _swapOffChainTo-

kens function.

SHB.22 Potential Unrestricted Withdrawals During Pause

State
- Severity: [EOW - Likelihood: 1
. Status: Fixed - Impact: 2

The contract has an issue in its triggerMultipleTokenWithdrawal function where it allows
users to withdraw funds even when the protocol is paused. While the withdrawOffChain
function has the notPaused modifier and checks in the tokenRegistry if the protocol is
paused, the triggerMultipleTokenWithdrawal function does not perform these checks.

SHB.22.1: OffChainindexSwap.sol

351 function withdrawOffChain(ExchangeData.ZeroExWithdraw memory inputData
<) external virtual nonReentrant notPaused {
352 address user = msg.sender;

353 address withdrawToken = userWithdrawDatal[user] .withdrawToken;

SHB.22.2: OffChainindexSwap.sol

s function triggerMultipleTokenWithdrawal() external nonReentrant {
522 // Check if the user has redeemed their tokens

523 if (luserWithdrawData[msg.sender] .userRedeemedStatus) {

524 revert ErrorLibrary.TokensNotRedeemed() ;

525 }

60

To mitigate this issue, it is recommended to add the notPaused modifier to the triggerMul-
tipleTokenWithdrawal function and include a check to verify if the protocol is paused. If the
protocol is paused, the function should revert with an appropriate error message. This will
ensure that withdrawals cannot be made during a pause state, maintaining the integrity of
the protocol’s operations.

Theteamhasresolvedtheissue by removing the notPaused modifier from the withdrawOf-
fChain function to ensure a consistent behavior between the withdrawal functions.

SHB.23 Precision Loss When Dividing Odd Integers by Two

- Severity: [EOW] - Likelihood: 2

. Status: Fixed - Impact:1

The contract has a flaw where it may lose precision when dividing odd integers by two. This
is because in Solidity, integer division is floor division, meaning that the result of the divi-
sion operation will be the largest integer less than or equal to the exact result. Therefore,

when an odd integer is divided by two, the result will be rounded down, leading to a loss of
precision.

SHB.23.1: Exchange.sol

86 uint256 swapValue = underlying.length > 1 7 inputData._swapAmount.div(2)

<~ : inputData._swapAmount;

61

SHB.23.2: Exchange.sol

sm function getSwapVaule(uint256 len, uint256 amount) internal pure returns
— (uint256) {

432 return (len > 1 ? amount.div(2) : amount);

433 }

SHB.23.3: Exchange.sol

686 function validateAmount (uint256 expectedAmount, uint256 userAmount,

— uint256 len) internal pure {

687 uint256 PERCENTIn18Decimal = 10 ** 22;

688 uint256 diff = expectedAmount.div(len) .mul (PERCENTIn18Decimal) .div(
< userAmount) ;

689 uint256 diffPercentage = diff < PERCENTIn18Decimal 7
— PERCENTIn18Decimal.sub(diff) : diff.sub(PERCENTIn18Decimal);

690 if (diffPercentage > PERCENTIn18Decimal) {

691 revert ErrorLibrary.InvalidBuyValuesQ);

692 }

93}

When dividing an amount by two, consider taking the first amount as the division result by
two, and the second one to be the total amount minus the first one.

The team resolved the issue by considering the first amount as the division result and the

second one as the rest.

62

SHB.24 LackofCross-Contract Reentrancy Protection

. Severity: INFORMATIONAL - Likelihood: 1

- Status: Fixed « Impact: 0

The contract has an issue in its triggerMultipleTokenWithdrawal function where it lacks
protection against cross-contract reentrancy attacks. While the investinFund,
withdrawFund, investinFundOffChain, and redeemTokens functions in the IndexSwap and
OffChainIindexSwap contracts have individual reentrancy guards, there is no single
reentrancy guard spanning the two contracts.

SHB.24.1: IndexSwap.sol

s contract IndexSwap is Initializable, ERC20Upgradeable,
— ReentrancyGuardUpgradeable, UUPSUpgradeable, OwnableUpgradeable {

SHB.24.2: OffChainlndexSwap.sol

s contract OffChainIndexSwap is Initializable, OwnableUpgradeable,
— UUPSUpgradeable, ReentrancyGuardUpgradeable {

Tomitigate thisissue,itisrecommended toimplement asingle reentrancy guard that spans
both the IndexSwap and OffChainIndexSwap contracts. This will ensure that reentrancy at-
tacks cannot be made across the two contracts if the logic ever gets updated to be vulner-
able toreentrancy attacks.

63

The team has resolved the issue by implementing a cross contract reentrancy guard using

the CommonReentrancyGuard contract.

SHB.25 Off-ChainlnvestmentFailure DuetoNon-ZeroProto-

col Fees
- Severity: [INFORMATIONAL - Likelihood: 1
. Status: Fixed « Impact: 0

In the OffChainindexSwap contract, the investinFundOffChain function allows a user to
pass a protocolFee array that signifies the fees to be paid to the protocol. However, if the
user passes any value greater than 0, the investment operation will fail. This is because
the function checks if the balance of the contract in Ether is less than the protocolFee and
the swap call to the ZeroExHandler does not deposit any Ether, therefore the function
reverts with an InsufficientFeeFunds error.

SHB.25.1: ZeroExHandler.sol

s function swap(

2 address sellTokenAddress,
27 address buyTokenAddress,
28 uint256 sellAmount,

29 uint256 protocolFee,

30 bytes memory callData,

3 address _to

2) public payable {

64

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

uint256 tokenBalance = IERC20Upgradeable(sellTokenAddress) .balanceOf
> (address(this));
if (tokenBalance < sellAmount) {
revert ErrorLibrary.InsufficientFunds(tokenBalance, sellAmount);
}
uint256 ethBalance = address(this).balance;
if (ethBalance < protocolFee) {

revert ErrorLibrary.InsufficientFeeFunds(ethBalance, protocolFee);

3

setAllowance(sellTokenAddress, swapTarget, sellAmount);

uint256 tokensBefore = IERC20Upgradeable(buyTokenAddress) .balance0f (
< address(this));

(bool success,) = swapTarget.call{value: protocolFee}(callData);

if (!success) {

revert ErrorLibrary.SwapFailed();

3

Consider requiring the protocolFee to be equal to zero.

The team has resolved the issue by removing the unused protocolFee parameter.

65

4 Best Practices

BP.1 Remove Unnecessary Initializations

The smart contract unnecessarily initializes variables with their default values. In Solid-
ity, variables are automatically initialized with their default values (e.g., 0 for integers, false
for booleans, etc.) when they are declared. Explicitly initializing these variables with their
default values is redundant and can lead to unnecessary gas costs and code complexity. It
is recommended to remove the unnecessary initializations of variables with their default

values.

- IndexFactory.sol

- IndexSwap.sol

- Exchange.sol

- IndexSwaplLibrary.sol
- OffChainindexSwap.sol
- AbstractLPHandler.sol
- SlippageControl.sol

- OnelnchHandler.sol

- ParaswapHandler.sol
- ZeroExHandler.sol

- RebalancelLibrary.sol
- Rebalancing.sol

- AssetManagerConfig.sol

66

BP.2 Ommit Unnecessary Approval of Contract to
Its Own Address

The contract unnecessarily approves the contract toits own address. It grants the contract
an allowance of _amount tokens from its own balance. However, a contract already has the
ability to transfer its own tokens without needing to grant itself an allowance. This unnec-
essary approval can lead to confusion and potential misuse. Itis recommended to remove
the unnecessary approval of the contract to its own address.

BP.2.1: IndexSwap.sol

m TransferHelper.safeApprove(_token, address(this), _amount);

BP.3 UnnecessaryUse of SafeMath & SafeMathUp-
gradeable Libraries

The smart contract unnecessarily uses the SafeMath and SafeMathUpgradeable libraries
for arithmetic operations. Starting from Solidity version 0.8.0, the language has built-in
overflow and underflow protection, making the use of these libraries redundant. This can
lead to unnecessary gas costs and code complexity. It is recommended to remove the use
of the SafeMath and SafeMathUpgradeable libraries and rely on Solidity’s built-in overflow
and underflow protection for arithmetic operations. This can be done by simply perform-
ing arithmetic operations normally, without using the SafeMath or SafeMathUpgradeable
functions. This will reduce gas costs and simplify the contract’s code.

67

All contracts that use SafeMath or SafeMathUpgradeable.

BP.4 Remove Unused Ether Call

Inthe IndexSwap contract, the investinFund function sends msg.value (the amount of Ether
sent with the function call) to the exchange contract, and the exchange contract never re-
turns any of it back to the IndexSwap contract. As aresult, address(this).balance (the bal-
ance of the IndexSwap contract) will always be zero at the end of the function call, unless
someone sent Ether directly to the contract through the receive function. The last lines of
the function, which check the contract’'s balance and sends it back to the user, are therefore

unnecessary and can be removed.

BP.4.1: IndexSwap.sol

2m // refund leftover ETH to user

218 (bool success,) = payable(_to).call{value: address(this).balance
— F(");

279 // require(success, "Transfer ETH failed");

280 if (!success) {

281 revert ErrorLibrary.ETHTransferFailed();

282 T

68

BP.5 Redundant External Call in
OffChainindexSwap Contract

Inthe OffChainIndexSwap contract, the _getTokenBalancelnBNB function makes an exter-
nal call to the getPriceTokenUSD18Decimals function of the oracle contract. However, the
return value of this call is not used in the function. This is a redundant operation that con-
sumes unnecessary gas and can be removed.

To improve the efficiency of the contract, it is recommended to remove the redundant
external call to getPriceTokenUSD18Decimals. This will reduce the gas cost of the _getTo-
kenBalancelnBNB function and make the contract code cleaner and easier to understand.

BP.5.1: OffChainIndexSwap.sol

s function _getTokenBalanceInBNB(

479 address _token,

480 uint256 _tokenAmount

481) internal view returns (uint256 tokenBalanceInBNB) {

482 oracle.getPriceTokenUSD18Decimals(_token, _tokenAmount);

483 uint256 tokenBalanceInUSD = oracle.getPriceTokenUSD18Decimals(_token
— , _tokenAmount);

484 tokenBalanceInBNB = oracle.getUsdEthPrice(tokenBalanceInUSD) ;

s}

69

BP.6 Inefficient Loop in _swaplokenTolokens
Function

Inthe _swapTokenToTokens function, the vault address is retrieved in each iteration of the
loop. Thisisinefficientas it consumes unnecessary gas. The vault address does not change
during the loop execution, so it can be retrieved once before the loop starts and then used

in each iteration.

BP.6.1: Exchange.sol

s function _swapTokenToTokens (
527 FunctionParameters.SwapTokenToTokensData memory inputData
s22) external payable virtual onlyIndexManager returns (uint256

— investedAmountAfterSlippage) {

529 IIndexSwap _index = IIndexSwap(inputData._index);
530 address[] memory _tokens = _index.getTokens();

531 for (uint256 i = 0; i < _tokens.length; i++) {

532 address vault = _index.vault(Q);

533 address _token = _tokens[i];

534 uint256 swapAmount = getSwapAmount (

535 inputData._totalSupply,

536 inputData._tokenAmount,

537 inputData.amount[i],

538 uint256 (_index.getRecord(_token) .denorm)

539)

70

BP.7 Redundant Checkin Weight Calculation

In the loop where weights are being calculated, there is a redundant check for
weightToSwap being equal to zero. This check is unnecessary because it is already
ensured that _newWeights]i] is greater than _oldWeights][i], which means weightToSwap
will always be greater than zero.

BP.7.1: Rebalancing.sol

w0 for (uint256 i = 0; i < tokens.length; i++) {

151 if (_newWeights[i] > _oldWeights[i]) {

152 uint256 weightToSwap = newWeights[i].sub(_oldWeights[i]);
153 if (weightToSwap == 0) {

154 revert ErrorLibrary.WeightNotGreaterThan0();

155 }

BP.8 Remove Unused Variables and Events

Throughout the codebase, there are several instances where variables or events are de-
clared but never used. This can lead to confusion for developers reading the code and can
potentially waste gaswhenthe contractis deployed. Some examples would be the Reward-
TokensDistributed event and the rewardTokens.

71

59 event RewardTokensDistributed(address indexed _index, address indexed

— _rewardToken, uint256 indexed diff);

15 struct TokenRecord {

1 bool primary;

17 bool enabled;

18 address handler;

19 address|[] rewardTokens;
0}

Status - Fixed

12

5

1

NN NN N

N N N N N

L N NN

Tests

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens
return values of deposit should be greater than 0

should redeem tokens

73

Q\

<

N N N N N

2 N R N N U N

d

Q\

gets underlying asset of the token
should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0

14

R N N S 2 N N N A N N

1

<

should redeem tokens
gets underlying asset of the token
should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

75

N N N N N N N NN

S N N N N

d

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

16

NN N N NN

S N N N N N

1

Q\

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should lend tokens

return values of deposit should be greater than 0
should redeem tokens

gets underlying asset of the token

should get token balance of the token holder

should get the token price in USD

should revert back if the custodial is true and no address is passed in

_owner

should revert back if the _custodial is true and threshold is more than

owner length
Initialize 1st IndexFund Tokens
Calculate fees should return fee values

Invest 1IBNB into Top10 fund
77

SN NEREN

1

<

Invest 2BNB into Top10 fund
Invest 2BNB into Top10 fund
Should charge fees forindex 1

Should charge fees forindex 1

should revert back if the custodial is true and no address is passed in

_owner

should revert back if the _custodial is true and threshold is more than

owner length

asset manager should create a private transferable fund and make it

non-transferable

asset manager should be able to make the previous private fund trans-

ferable to whitelisted addresses

asset manager should be able to convertthe previous transferable pri-

vate fund to public

asset manager should be able to make the previous public fund non-

transferable

asset manager should not be able to make the previous public fund

transferable to only whitelisted addresses

asset manager should be able to make the previous public fund trans-

ferable

should check Index token name and symbol

18

N NN N N N N N N N N N N N N N NN

should check if module owner of all fund is exchange contract
initialize should revert if total Weights not equal 10,000

initialize should revert if tokens and denorms length is not equal
initialize should revert if token not whitelisted

Initialize 1st IndexFund Tokens

Initialize 2nd IndexFund Tokens

Initialize 3rd IndexFund Tokens

Initialize 4th IndexFund Tokens

Owner of vault for 1st fund should be exchangeHandler address
Owner of vault for 2nd fund should be deployer’s addressess
Owner of vault for 3rd fund should be exchangeHandler address
Owner of vault for 4th fund should be exchangeHandler address
Calculate fees should return fee values

expect owner to be IndexFactory

Invest 0.1BNB into Top10 fund should fail for slippage greater than 10

Invest 0.1BNB into Top10 fund

Invest 2BNB into Top10 2nd index fund
Invest 0.1BNB into Top10 3rd index fund
Invest 0.1IBNB into Top10 3rd index fund

Invest 2BNB into Top10 4th index fund

79

N N N N N N N N N N N SR NEERN

Invest 2BNB into Top10 4th index fund

Invest 2BNB into Top10 4th index fund should revert if bnb value is

greater than 0 and investment tokenis not bnb

Invest 2BNB into Top10 4th index fund on behalf of addr3 should fail if

user addr3 is not whitelisted

Add addr3 whitelisted user

Invest 2BNB into Top10 4th index fund on behalf of addr3

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Add addr1 whitelisted user

non owner should not be able to add whitelist manager admin

owner should be able to add asset whitelist manager admin

owner should not be able to add index manager

owner should not be able to add rebalancing manager

non whitelist manager admin should not be able to add asset manager
new whitelist manager admin should be able to add whitelist manager
owner should be able to add whitelist manager

non whitelist manager should not be able to update merkle root

80

v

v

v

\

NN N YN NN

N NN N

Whitelist manager should be able to update merkle root
Whitelist manager should be able to add and remove a whitelisted user

non whitelist manager admin should not be able to revoke whitelist

manager
whitelist manager admin should be able to revoke whitelist manager

Whitelist manager should not be able to add user to whitelist after his

role was revoked

New (addrl) whitelisted user invest 2BNB into Top10 2nd index fund
New (addr2) whitelisted user invest 2BNB into Top10 2nd index fund
Non whitelisted user invest 2BNB into Top10 2nd index fund should fail
Should charge fees forindex 1

Should charge fees forindex 2

Management fees for index 3 should be 0

Invest 0.00001 BNB into Top10 fund should fail

asset manager should be able to add token which is approved in reg-

istry for allthe indexes

Invest 2BNB into Top10 fund

Invest IBNB into Top10 2nd Index fund
Invest IBNB into Top10 fund

Invest IBNB into Top10 2nd Index fund

Investment should fail when contract is paused

81

N NN N N N N N N N N N N N N N NN

update Weights should revert if total Weights not equal 10,000

Update Weights and Rebalance should revertif one of the weightis zero

should Update Weights and Rebalance

should Update Weights and Rebalance for 2nd Index Fund
should Update Weights and Rebalance for 2nd Index Fund
should Update Weights and Rebalance

should Update Weights and Rebalance

updateTokens should revert if total Weights not equal 10,000
updateTokens should revert if token is not whitelisted
updateTokens should revert if token is not enabled
updateTokens should revert if protocol is paused
updateTokens should revert if swapHandler is not enabled
Non Rebalancing access address calling update function
update tokens should revert is any two tokens are same
should update tokens

print values

should update tokens

withdrawal should revert when contract is paused

should unpause

should pause

82

N N N N N N NN

N N N N N N NN

should revert unpause

should unpause

should update tokens for 2nd Index

when withdraw fund more then balance

should fail withdraw when balance falls below min investment amount
should fail withdraw when balance falls below min investment amount
should withdraw fund and burn index token successfully

should withdraw fund and burn index token successfully

should withdraw fund and burn index token successfully for account

that has been removed from whitelist

Invest 0.1BNB into Top10 2nd Index fund

transfer idx for a non transferable portfolio should fail
transfer idx from owner to non whitelisted account should fail
transferidx from owner to a whitelisted account

transfer idx from owner to another account (Index 3)
transferidx from owner to another account (Index 4)

new owner of idx withdraws funds from Index 3

Invest IBNB into Top10 fund after last withdrawal

withdraw check values

new owner of idx withdraws funds from Index 4

83

N N N N N N N N N N N S N NN

<\

should withdraw fund and burn index token successfully for 2nd Index

should withdraw fund and burn index token successfully for account

that received idx

Invest 2BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 2nd Index fund

Invest 0.1BNB into Top10 2nd Index fund

should withdraw tokens directly instead of BNB

should withdraw tokens directly instead of BNB for 2nd Index

non owner should not be able to add asset manager admin

owner should be able to add asset manager admin

non asset manager admin should not be able to add asset manager
new asset manager admin should be able to add asset manager
owner should be able to add asset manager

non-owner should be able to pause protocol

should not upgrade Proxy Exchnage To New Contract for 1st Index
should protocol pause

should upgrade Proxy Exchnage To New Contract for 1st Index and 2nd

Index
should not upgrade if msg.sender is not owner

non owner of indexFactory should not be able to upgrade Exchange

84

S NN N N N N N N N N NN

\

should upgrade Proxy IndexSwap To New Contract for 1st Index

should upgrade Proxy OffChainindexSwap To New Contract for 1st In-

dex

should unpause protocol

Invest 2BNB into Top10 1st index fund after upgrade
Invest 2BNB into Top10 1st index fund after upgrade
should pause protocol

should upgrade Proxy IndexSwap To New Contract for 2nd Index
should unpause protocol

Invest 2BNB into Top10 2nd index fund after upgrade
Upgrade TokenRegistry

Upgrade IndexFactory, and not able to create Index
should unpause index creation and creat index
should set new cool down period

Invest 2BNB into Top10 2nd index fund after upgrade

Invest 1IBNB into Top10 2nd index fund after upgrade and should no re-

vert
should withdraw fund and burn index token successfully should fail
transfer tokens should fail, if cooldownperiod is not passed

should transfer token and withdraw fund and burn index token
successfully

85

N N N RN

should fail to create an index with management fee greater than max

fee

should fail to create an index with management fee greater than max

fee
Nonasset manager should notbe ableto propose new managementfee
Asset manager should propose new management fee

Asset manager should notbe able to update management fee before 28

days passed

Non asset manager should not be able to delete proposed new man-

agement fee

Asset managershouldbe ableto delete proposed new managementfee
Non asset manager should not be able to update management fee
Nonasset manager shouldnotbe abletopropose new performance fee
Asset manager should propose new performance fee

Asset manager should be able to update performance fee before 28

days passed

Non asset manager should not be able to delete proposed new perfor-

mance fee
Asset managershouldbe abletodelete proposed new performance fee
Non asset manager should not be able to update performance fee

Non asset manager should not be able to update the asset manager

treasury

86

v

N NN N

L N NN

NN

Q\

Asset manager should not be able to update the asset manager trea-

sury
Non asset manager should not be able to update the velvet treasury
Asset manager should be able to update the velvet treasury

Non owner should not be able to update protocol slippage

Owner should not be able to update to a slippage more than 10

Owner should not be able to update protocol slippage

should check Index token name and symbol
initialize should revert if total Weights not equal 10,000

Initialize should fail if the number of tokens exceed the max limit set

during deployment (current =15)

should retrieve the current max asset limit from the TokenRegistry
should update the max asset limit to 10 in the TokenRegistry
should retrieve the current max asset limit from the TokenRegistry

Initialize should fail if the number of tokens exceed the max limit set by

the Registry (current =10)
Initialize IndexFund Tokens
should add pid

should remove pid

87

N

N N N N N N N N N N N N N

asset manager should not be able to add token which is not approved in

registry
Invest 0.16 BNB should not revert, if investing token is not initialized
Invest 10BUSD should revert, if investing token is not initialized

asset manager should be able to add token which is approved in reg-
istry

Invest 0.1BNB into Top10 fund should fail if LP slippage is invalid
Invest 0.1BNB into Top10 fund

Invest 10BUSD into Top10 fund

Invest 0.00001 BNB into Top10 fund should fail

Invest 2BNB into Top10 fund

should return false if both of the token in poolis not bnb
Invest IBNB into Top10 fund

Investment should fail when contract is paused

update Weights should revert if total Weights not equal 10,000
should Update Weights and Rebalance

updateTokens should revert if total Weights not equal 10,000
owner should be able to add asset manager

non owner should not be able to add asset manager

new asset manager should update tokens

withdrawal should revert when contractis paused

88

S N NS NN

S N N Y N N N NN

1

Q\

should unpause

should pause

should revert unpause

should unpause

when withdraw fund more then balance

should fail withdraw when balance falls below min investment amount

should fail withdraw when balance falls below min investment amount

(multi asset)

should withdraw fund and burn index token successfully

Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

Invest IBNB into Top10 fund

Invest IBNB into Top10 fund

should withdraw fund in ETH and burn index token successfully
Invest 0.1BNB into Top10 fund

Invest 0.1BNB into Top10 fund

should withdraw tokens directly instead of BNB

should check Index token name and symbol

initialize should revert if tokens length does not match denorms length

89

N N N R N NN

\

N

SN N N N N RN

initialize should revert if a token address is null

initialize should revertif a non-approved token is being used for init
initialize should revert if total Weights not equal 10,000

Initialize IndexFund Tokens

Initialize 2nd IndexFund Tokens

should confirm that the correct tokens are initialised

should confirm that the correct tokens are initialised

non-admin should not be able to call the access control setupRole

function
admin should be able to call the access control setupRole function
should update a price Oracle feed

should not be able to obtain the decimals of a token pair price feed

where aggregatoris zero address

should not be able to add pid if arrray lengths don’'t match
should not be able to delete pidif array lengths don't match
should add pid

should delete pid

should fetch the router address of the pancake LP handler
should get the swap address from the pancake swap handler
should check if atokenis enabled or notin the registry

should disable a token in the registry

90

S N N N

should reiterate the WETH address of the token registry

should not be able to enable a zero address permitted token in Token-

Registry
should not be able to enable if empty array is passed to TokenRegistry
should not be able to enable atoken which is already enabled

should not be able to enable token in registry if the oracle array length

does not match the length of other arrays

should not be able to enable token in registry if the token array length

does not match the length of other arrays

should not be able to enable tokeninregistryif the handler array length
does not match the length of other arrays

should not be able to enable token in registry if the reward token array

length does not match the length of other arrays

should not be able to enable token in registry if the reward token array

length does not match the length of other arrays

disable tokeninregistry should fail if zero address is passed
disable tokeninregistry should fail if token is not enabled at all
disable tokeninregistry should fail if empty array is passed
should disable a permitted token in TokenRegistry

isPermitted function from TokenRegistry should not return output for
zero address

should update an enabled token’s data in the TokenRegistry

91

S N N N Y NN

Q\

Non-primary tokens should not get enabled on the registry level

asset manager should not be able to add token which is not approvedin

registry

asset manager should notbe abletodelete azeroaddress as permitted

token
asset manager should not be able to delete a non-permitted token

asset manager should not be able to delete permitted tokens if an

empty array is passed

isTokenPermitted should not return output for asset manager config
Invest 0.1 BNB should not revert, ifinvesting token is not initialized
Invest 0.1BNB in 2nd index

Invest 1BNB in 2nd index

Invest 10BUSD should not revert, if investing token is not initialized

assetmanager should be able to permittoken whichis approvedinreg-

istry
should not be able to get underlying of a zero address Wombat lp token

should not be able to gettoken balance of a zero address Wombat lp to-
ken

should not be able to gettoken balance of a zero address Wombat lp to-

ken holder

should not be able to get underlying balance of a zero address Wombat

lp token

92

v

v

should not be able to get underlying balance of a zero address Wombat

lp token holder
should not be able to get token balance of a zero address Alpaca token

should not be able to get underlying token of a zero address Alpaca to-

ken

should not be able to get underlying balance of a zero address Alpaca

token holder

should not be able to get underlying balance of a zero address Alpaca

token
should notbe ableto getunderlyingtoken ofazeroaddress Beefytoken
should not be able to get token balance of a zero address Beefy token

should not be able to get underlying balance of a zero address Beefy

moo token

should not be able to get underlying balance of a zero address Beefy

moo token holder
should be able to get underlying balance of a Beefy LP token

should not be able to get underlying token of a non-Venus token via the

Venus handler

should not be able to get underlying balance of a zero address Venus

token

should not be able to get underlying balance of a zero address Venus

token holder

should not be able to get token balance of a zero address Venus token

93

SN N NN

S N N U N N NN

should not be able to get token balance of a zero address Venus token
holder

should not be able to get underlying token of a zero address Venus to-

ken

should add reward token to registry and verify it
should remove reward token from registry and verify it
should add reward token to registry and verify it

should revert when add reward token to registry sending 0 address to-

ken address

should revert when add reward token to registry sending 0 address

handler address

Invest 10BUSD into Top10 fund

Invest 0.00001 BNB into Top10 fund should fail

Invest 10BNB into Top10 fund

Invest 10BNB into Top10 fund

Investment should fail when contract is paused

should be able to claim tokens for portfolio tokens

update Weights should revert if total Weights not equal 10,000

update weights should revert if weights and slippage array length don't

match

update weights should revert if slippage array length don’t match the

token count

94

S N N N N NN

N N S N N N N NN

update weights should revert if swap handler is not enabled

should Update Weights and Rebalance

should Update Weights and Rebalance

should Update Weights and Rebalance

updateTokens should revert if total Weights not equal 10,000

owner should be able to add asset manager

non owner should not be able to add asset manager

disable swaphandlerinregistry should not workif handler array length
isO

disable swaphandler in registry should not work if the handler is al-
ready disabled

update tokens should not work if the protocol is paused

update tokens should not work if swaphandler is not enabled

update tokens should not work if non-enabled token is being used
new asset manager should update tokens

withdrawal should revert when contract is paused

should unpause

should pause

should revert unpause

should unpause

when withdraw fund more then balance

95

v

N N NN

N N N N N

should fail withdraw when slippage array length is not equal to index

length
should fail withdraw when balance falls below min investment amount

should fail withdraw when balance falls below min investment amount

(multi asset)

should fail withdraw fund when the output token is not permitted in the

asset manager config and is not WETH

should fail withdraw when the protocol is paused

should withdraw fund and burn index token successfully

Invest IBNB into Top10 fund

should withdraw fund in BUSD and burn index token successfully
Invest IBNB into Top10 fund

should withdraw tokens directly instead of BNB

Initialize IndexFund Tokens
should add pid

Initialize 2nd IndexFund Tokens
Invest1BNB into 1st fund

Invest 2BNB into Top10 2nd fund
Invest 2BNB into Top10 2nd fund

Invest 51.8 BUSD in 1st Index fund
96

N N N N N N N N N N N N

<

Invest 1BUSD in 1st Index fund should fail (under min amount)

Invest 50 DOGE in 1st Index fund

Invest 50 DOGE in 2nd Index fund

Invest 50 DOGE should fail, if user inputis incorrectin 2nd Index fund
Invest 1ETH should fail if user has sent wrong input in 2nd Index fund
Invest 1 ETH should fail if user tries to manipulate weight in 2nd Index
Invest 1ETH should fail if user has sent wrong input in 1st Index fund
Invest 1ETH should fail if user tries to manipulate weight

Invest 0.01BTC in 1st Index fund

Invest 1BNB into 1st Top10 fund

Invest 10 BUSD in 2nd Index fund

Invest 0.1BNB in 2nd Index fund

Invest 1BNB into 1st Top10 fund

redeem should fail if a non-permitted and non-WETH token is passed

as the out asset
should withdraw properly with rebalance in between
Invest 1BNB into 1st Top10 fund

should revert if sellToken address length is manupilated and trigger-

multiple withdrawal
Invest 1BNB into 1st Top10 fund

should Update Weights and Rebalance for 2nd Index
97

SN NEREN

\

<

SN NN

v

v

v

Invest 2BNB in 2nd Index fund
Invest 2 BNB in 1st Index fund
should fail if offchainHandler is not valid

Invest 1BNB in 1st Index fund should revert if bnb value is greater than

0 and investment tokenis not bnb
withdraw should fail if user balance falls below min amount

should withdraw fund and burn index token successfully for 1st Index

,Simultaneously for both user
addr2 should invest using offchain
addr2 should emergency withdraw
owner should invest using offchain

TriggerMultiple TokenWithdrawal withdraw should fail is protocol is
paused and work if protocolis unpaused

Non owner should not triggerMultiple TokenWithdrawal withdraw
Invest 1BNB into 1st Top10 fund

Withdraw and triggerMultipleWithdrawal should fail if the protocol is
paused

should revert if aggregatoris already added

shouldrevertifbase arraylength does not match the length of other ar-
rays

98

SN N U N N N N N N N N N N NN

should revert if quote array length does not match the length of other

arrays

should revert if quote array length does not match the length of other

arrays
Get ETH/WBNB price
Get BTC/ETH price

Get BUSD/WBNB price
Get BTC/USD price
Get BTC/USD price
Get ETH/USD price
Get BUSD/USD price
Get DAI/USD price

Get WBNB/USD price
Get DOGE/USD price
Get USD/WBNB price
Get BTC/WETH price
Get WETH/BTC price
Get ETH/WETH price
Get WETH/ETH price
Get DOGE/WETH price

Get WETH/DOGE price
99

N NN N N N N N N N N N N N N N NN

Get USD/DOGE price

Get DOGE/wbnb price

Get wbnb/DOGE price

Get doge/wbnb price

Get wbnb/doge price

Get DOGE pricein 18 decimals

Get BUSD pricein18 decimals

Get ETH price in 18 decimals

Get BTC price in 18 decimals

Get WBNB_BUSD price in18 decimals

Get CAKE_BUSD price in 18 decimals

Get CAKE_WBNB price in18 decimals

Get ADA_WBNB pricein18 decimals

Get BAND_WBNB price in 18 decimals

Get DOT_WBNB price in18 decimals

Get DOGE_WBNB price in18 decimals

Get BSWAP_WBNB_BUSD price in 18 decimals

Get BSWAP_BUSDT_BUSD price in 18 decimals
Get BSWAP_BUSDT_WBNB price in 18 decimals
Get BSWAP_ETH_BTC price in18 decimals

100

N N N N N N NN

N N N N N N N N N A

Get BSWAP_BTC_WBNB price in 18 decimals

Get BSWAP_DOGE_WBNB pricein 18 decimals
Get APESWAP_WBNB_BUSD pricein 18 decimals
Get APESWAP_ETH_BTCB price in 18 decimals
Get APESWAP_ETH_WBNB price in 18 decimals
Get APESWAP_USDT_WBNB price in 18 decimals
Get APESWAP_DOGE_WBNB price in 18 decimals
owner updates the oracleTimeout to 35 hours

non owner should not be able to update oracleTimeout

Initialize 1st IndexFund Tokens
Initialize 2nd IndexFund Tokens
Initialize 3rd IndexFund Tokens
Initialize 4th IndexFund Tokens
Initialize 5th IndexFund Tokens
Initialize 6th IndexFund Tokens
Initialize 7th IndexFund Tokens
Initialize 8th IndexFund Tokens
Invest 0.1BNB into Top10 fund

Invest 0.1BNB into 5th fund

101

N NN N N N N N N N N N N N N N NN

Invest IBNB into 6th fund

Invest 2BNB into index fund

Invest 2BNB into index fund

Invest 2BNB into index fund

Invest IBNB into Top10 fund

Invest 1IBNB into Top10 2nd Index fund

Invest IBNB into 7th Index fund

Invest IBNB into 8th index fund

should revert back if swapHandler is not enabled
swaps using linch Protocol

revert redeem

non assetManager should not revert if 15 minutes is not passed
non assetManager should revert if 15 minutes is passed
redeems token for Ox

swaps reverts if token address is wrong

swaps reverts if sellAmount is wrong

swaps reverts if sellAmount is wrong in calldata

swaps reverts if sellAddress is wrong in calldata
swaps using 0x Protocol

swaps using Paraswap Protocol

102

N N N U N N N N NN

should revert back if the calldata includes fee and the overall slippage

is more than1
Invest 2BNB into index fund

should revert back if the calldata includes fee and the overall slippage

ismore than1

should revert back if the calldata includes fee and the overall slippage

ismore than1

update external handler slippage should fail if value is greater than
MAX_SLIPPAGE

should update external handler slippage

should set max slippage as 0 and disabling slippage checks
Swaps directly to protocol token WBNB and ETH

Swaps directly to protocol token ERC20

Swaps WBNB directly to protocol token ERC20

Swaps WBNB directly to derivative protocol token ERC20

Invest 0.1BNB into Top10 fund

swaps into primary using ZeroEx Protocol from primary

swaps into derivative token using onelnch Protocol from primary
swaps into derivative using ZeroEx Protocol from primary

swapsintolptokenrevertsif sellAmountis notequalusing ZeroEx Pro-

tocol from primary

103

S N N N N N N N N NN

«\

S N N N N

swaps into lp token using ZeroEx Protocol from primary

Direct Swap reverts if passed underlying token length more than 1
Direct Swap reverts if underlying is not same

Direct Swap reverts if length of tokens are not same

Direct Swap reverts if length of tokens and sellAmount are not same
redeem should revert back if index not paused

should pause

redeem should revert back if token getting redeem is not valid
should revert back if the buy token is not registered

should revert back if not redeemed

should revert back if redeem is called by non asset manager

should revert backif metaAggregatorSwapis called by non asset man-

ager

Invest IBNB into Top10 fund

Initialize 1st IndexFund Tokens

Initialize 2nd IndexFund Tokens
Initialize 3rd IndexFund Tokens
Initialize 4th IndexFund Tokens

Invest IBNB into Top10 fund

104

N N N N N N NN

v

Q\

SN NEEEN

Invest 2BNB into Top10 2nd index fund

Invest IBNB into Top10 3rd index fund

Invest 2BNB into Top10 4th index fund

should revertif the price did not updated for more than 25 hours
should revert if the price did not updated for more than 25 hours
should update threshold of the oracle

Asset manager should propose new management fee

Asset manager should propose new management fee

Asset manager should be able to update management fee after 28 days

SEEELED

Asset manager should be able to update management fee after 28 days

passed
should claim tokens

should swap reward token using pancakeSwap Handler into derivative

token

should claim tokens

should swap reward token using pancakeSwap Handler into LP token
should claim tokens

swaps reward token should fail using Ox Protocol if buyToken is not In-

dexToken

swaps reward token using 0x Protocol

105

\

N

S N N N N N N N N N N N N

should claim tokens

should swap reward token using pancakeSwap Handler into WETH

base token
should claim tokens

should swap reward token using pancakeSwap Handler into base to-

ken

Initialize IndexFund Tokens

should add pid

should check if off chain handleris enabled or not
Initialize 2nd IndexFund Tokens

Invest 1BNB into Top10 fund

Invest 1BNB into Top10 fund

Invest 1BNB in firstindex fund

Should disable external swap handler

update weights should fail if any one weight is zero
update weights should fail if sum of weight is not 10000
Update Weights

print values after updating weights to [1000, 2000, 7000]
should _revert after enable Rebalance(lst Transaction)

should _revert after externalSell (2nd Transaction)

106

N NN N N N N N N N N N N N N N NN

should update weights

Invest 1BNB into Top10 fund

Invest 1BNB into Top10 fund

Should not update tokens if tokens is not approved

Should not update tokens if tokens is not whitelisted

Should not update if any one weightis zero

Should not update if weight is not equal to 10000

print values before

Should Update Tokens

print values after

should fail to revert backiif all transaction is completed

non assetManager should not be able to update portfolio to new tokens
should update portfolio to new tokens

should update tokens

Invest 1BNB into Top10 fund

Invest 1BNB into Top10 fund

Invest 1BNB into Top10 fund

Should add one more token

print values after adding one more token ([3000, 1000, 2000, 4000])
Invest 1BNB into Top10 fund

107

v~ Should remove one token

v Invest1BNB into Top10 fund

v Should Update Tokens and replace two tokens for vETH and
MAIN_LP_BUSD

v Invest1BNB into Top10 fund

v should fail if we call wrong revert function

v" non-assetManager should revert if 1I5minutes of Pause is passed

v" non-assetManager should not be able revert if 15minutes of Pause is

not passed

v itshould fail if assetmanager tries to execute 3rd transacton after 1st

621 passing

The code coverage results were obtained by running npx hardhat coverage in the project.
We found the following results:

- Statements Coverage: 96.57%
- Branches Coverage: 73.81%
« Functions Coverage: 89.74%

- Lines Coverage: 90.43%

108

6 Conclusion

In this audit, we examined the design and implementation of Velvet Capital V2 contract and
discovered several issues of varying severity. Velvet Capital team addressed 22 issues
raised in the initial report and implemented the necessary fixes, while classifying the rest
as a risk with low-probability of occurrence. Shellboxes’ auditors advised Velvet Capital
Team to maintain a high level of vigilance and to keep those findings in mind in order to
avoid any future complications.

109

7 ScopecFiles

7.1 Audit

Files MD5 Hash

contracts/FunctionParameters.sol 74d5b94e912ff4c250210e558c03ae%a

contracts/IndexFactory.sol c4114ce0e631695e49cb6db37cadc368d

contracts/vault/VelvetSafeModule.sol 94841e20705158e25da0d06fd66af055

contracts/registry/AssetManagerConfig.sol bbea36e152a646641605a8d97989584b

contracts/registry/TokenRegistry.sol df7da244af7e32cdd41bc3590bad4afss

contracts/rebalance/OffChainRebalance.sol 45713b873d1bcd7576¢c3¢c218d8ea9202

contracts/rebalance/RebalanceAggregator.sol 105a31d7cf2011b25ba9a4be87058848

contracts/rebalance/RebalanceLibrary.sol 0e4eb63027abe3c59853b8cad8469f164

contracts/rebalance/Rebalancing.sol

e948a43187c14d24f3db04f44a668099

contracts/oracle/IPriceOracle.sol

3e946f5f6a22f548cbdb4ab94e38f249

contracts/oracle/PriceOracle.sol

aef16301361093574cc54c0d918358el

contracts/library/ErrorLibrary.sol

244da0deas3f8dd80e510379d6cébab9f

contracts/library/GnosisDeployer.sol

0263333d87c831a53fbd302a8c69a487

contracts/handler/AbstractLPHandler.sol

6f0efcf1602c14353eead7c2abf4af9b

contracts/handler/ApproveControl.sol

9461albe702de46fbs046eb6eeabd2a83

contracts/handler/BaseHandler.sol

c78c5785a88e02861a9dbfb98f8e4bal

contracts/handler/DustHandler.sol

57796d364f26541b19df6ce8d1316f72

10

contracts/handler/ExternalSlippageControl.sol

b8203912308b95a4beaebh8e80a38805a

contracts/handler/PancakeSwapHandler.sol

4911d88d3d4df6a72d253d8517367c1b

contracts/handler/SlippageControl.sol

Tbb4e0ab0b64191e18d453f5b2a7e485

contracts/handler/Wombat/WombatHandler.sol

709f905fbb139307dd6882538c581186

contracts/handler/venus/VenusHandler.sol

86239e0790e0345f98257078efec9cas

contracts/handler/PancakeSwapLP/PancakeSwapLPHan
dler.sol

0ce767d16ba34711087f385a59e677c2

contracts/handler/libraries/FullMath.sol

1c9d54bfd986d35524095efb0c41f610

contracts/handler/ExternalSwapHandler/OnelnchHandle
r.sol

deae9f6b0e8276bf2a17ee38fc479fd7

contracts/handler/ExternalSwapHandler/ParaswapHand
ler.sol

3bf4623632f6428a5170eb594d724559

contracts/handler/ExternalSwapHandler/ZeroExHandler.
sol

708ca75564f785b38166b110ac90b5cé

contracts/handler/ExternalSwapHandler/Helper/Exchan
geData.sol

f372f110cc29b9f254836aecb4dleec8

contracts/handler/BiSwapLP/BiSwapLPHandler.sol

1204291b2a91a2bbe4319d2dd257¢359

contracts/handler/Beefy/BeefyHandler.sol

65c07c6flde8d5ed0626a0a7d9ff96d2

contracts/handler/Beefy/BeefyLPHandler.sol

9dbe7dc7f4dd3b8822e5f4de4caTIbf3

contracts/handler/ApeSwap/ApeSwaplLendingHandler.so
L

071c7e3ea2f86cbceb56949d14eccade

contracts/handler/ApeSwap/ApeSwapLPHandler.sol

fbf6dfb96a40e89978755594b45d4227

contracts/handler/alpaca/AlpacaHandler.sol

a526de406badf02a5fbc5e7d66060954

contracts/fee/FeeLibrary.sol

c347feaab9aa2977c5cf1603bdbcd58d

11

contracts/fee/FeeModule.sol

fcccdeld2d57283b08d7c7bda9344318

contracts/core/Exchange.sol

212559cff900fc936166b444d8082795

contracts/core/IndexSwap.sol

f9dda9f817fc6dec0ada382f2485c322

contracts/core/IndexSwapLibrary.sol

4eTcd179b5a336d5a93a010336658163

contracts/core/OffChainindexSwap.sol

c84884e133dc787813b36e1d8bf1df02

contracts/access/AccessController.sol

a9523257273d905f54b09e89167f4502

7.2 Re-Audit

Files

MD5 Hash

contracts/FunctionParameters.sol

dbaf59b3bf9760eeb80df2900842e9b4

contracts/IndexFactory.sol

a99092164c72673fdéadeb6f8832a05c9

contracts/vault/VelvetSafeModule.sol

b98fbee2e8ebeb69dcde20ba7clcf2486

contracts/registry/AssetManagerConfig.sol

c20158049ddfbbd5a801e6a5783ab6ad?

contracts/registry/TokenRegistry.sol

b32d8aa507a2003fda8e231cc4ba23e’

contracts/rebalance/OffChainRebalance.sol

6e5e576f731bc20bb0afe5ddd78ed284

contracts/rebalance/RebalanceAggregator.sol

f8bee57f68898b878ea5e8dff589bb55

contracts/rebalance/RebalanceLibrary.sol

€2592def84f96455bf5abe96béc17dfc

contracts/rebalance/Rebalancing.sol

b9e8e0b740d1d48fd88026a18167c7a7

contracts/oracle/PriceOracle.sol

b799722c01a41b3738ee0d35baeffc1?

contracts/oracle/aggregators/AggregatorV3int

erface.sol

c09b2fc2eb6637f1159df7787b9ee342

12

contracts/oracle/aggregators/UniswapV2LPAg
gregator.sol

b1113349cd57bd71df5c1d25819b068¢

contracts/library/ErrorLibrary.sol

f1183752d271003baa403fc2e88ceafl

contracts/library/GnosisDeployer.sol

0263333d87c831a53fbd302a8c69a487

contracts/handler/AbstractLPHandler.sol

6d31149c968acba2570f37b4b2d4ccf2

contracts/handler/ApproveControl.sol

9461albe702de46fb404bebeeabd2a83

contracts/handler/BaseHandler.sol

57cef964e92d2125936c455897686d3d

contracts/handler/DustHandler.sol

b66055a0fbab10a319207a8eba%bs2be

contracts/handler/ExternalSlippageControl.sol

3600b32af41ac1538fb2dc3841b17c0c

contracts/handler/PancakeSwapHandler.sol

119e217¢c53498de17be466989c171041

contracts/handler/SlippageControl.sol

aa6ah9d8729140c50c6f3547d5a2d0f1

contracts/handler/Wombat/WombatHandler.sol

8ab07965ba2c7d4de2d7ef4148077aeb

contracts/handler/venus/VenusHandler.sol

ef2ab64047244703901500a04ad9598d

contracts/handler/PancakeSwapLP/PancakeS
wapLPHandler.sol

04dc3f9b2ed413f67bdf480fc6es3ed8

contracts/handler/libraries/FullMath.sol

ael7cla%9e0c2a3dab384e0ecédf61744

contracts/handler/ExternalSwapHandler/Oneln
chHandler.sol

0951a3becf608996e4e1d2552318bd40

contracts/handler/ExternalSwapHandler/Paras
wapHandler.sol

401207b58791b7d9318eeab494a21f21

contracts/handler/ExternalSwapHandler/ZeroE
xHandler.sol

52ef9299fac218a9372dcac098c80fc3

contracts/handler/ExternalSwapHandler/Helpe
r/ExchangeData.sol

3fc39414cc12f40bbc03443577846691

13

contracts/handler/BiSwapLP/BiSwapLPHandle
r.sol

12d5307b9d0a766d6946d7d2feb8329f

contracts/handler/BiSwapLP/interfaces/IMaste
rChef.sol

81a12127050bb962576b465abee2chb]l

contracts/handler/Beefy/BeefyHandler.sol

498fe730e82fe4c5364294233470c777

contracts/handler/Beefy/BeefyL PHandler.sol

092bebf2b962ad82018d94196abb92bd

contracts/handler/ApeSwap/ApeSwapLending
Handler.sol

5b92c60f32092e8627f53c3386fc5501

contracts/handler/ApeSwap/ApeSwapLPHandl
er.sol

al107e7f490a07a6dc8e72d3c9f807bbhb

contracts/handler/alpaca/AlpacaHandler.sol

2700ad95469cc35248cf0a41b4s7c3a36

contracts/fee/FeeLibrary.sol

d062a72c0425b3538c09e8469904d2c8

contracts/fee/FeeModule.sol

838f9806008bchd2ea8bh995e028e19b4

contracts/core/CommonReentrancyGuard.sol

4f08a48517b1fe6064f52bb1270c8d45

contracts/core/Exchange.sol

d444d5bdbbf1487a3bd7658ab3deddec

contracts/core/IndexSwap.sol

ale85ceeb1d9dd5c81b7cc68931a4lfc

contracts/core/IndexSwapLibrary.sol

4f11a2629fe9aaaceeb8a669b9e16010

contracts/core/OffChainindexSwap.sol

8176291c936290f6f29ddffc13846f08

contracts/access/AccessController.sol

9ebb52b030cacb6a92cdé628edccdbc9eb

14

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

15

SHELLBOXES

For a Contract Audit, contact us at contact@shellboxes.com

116

mailto:contact@shellboxes.com

	Introduction
	About Velvet Capital
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Potential Over-Minting of Tokens Due to Unchecked Deposited Amount
	StreamingFee Check Can Cause a Denial of Service
	Incorrect Token Price Calculation Leading to Denial of Service
	Inaccuracy in LP Token Price Calculation Due to Decimal Mismatch
	Potential Loss of Index Tokens Due to Lack of Swap Result Update
	Misevaluation of User's Investments in LP Tokens
	Potential Portfolio Imbalance Due to OffChain Swaps
	Bypass of Withdrawal Cooldown Period Restriction
	Flaw in Share Minting Leading to Potential Fund Misappropriation
	Unfair Distribution of Rewards Due to Timing of claimTokens Function Calls
	Griefing Attack in Withdrawal Process
	Hard-coded Slippage Leading to Potential Fund Freeze
	Potential Sandwich Attack Due to Chainlink Oracle Failure
	Lack of Freshness Check for Chainlink Price Feed Data
	Precision Loss in Price Calculation Function
	Mismatch Between _tokenAmount and buyAmounts Array Can Lead to Uninvested Funds
	Unchecked Transfer Return Value
	Missing Array Length Check
	Missing Maximum Amount for User Supplied Slippage
	Potential Out of Gas Exception Due to Long _tokens Array
	Potential Failure of Off-Chain Investment Due to Disabled Tokens
	Potential Unrestricted Withdrawals During Pause State
	Precision Loss When Dividing Odd Integers by Two
	Lack of Cross-Contract Reentrancy Protection
	Off-Chain Investment Failure Due to Non-Zero Protocol Fees

	Best Practices
	Remove Unnecessary Initializations
	Ommit Unnecessary Approval of Contract to Its Own Address
	Unnecessary Use of SafeMath & SafeMathUpgradeable Libraries
	Remove Unused Ether Call
	Redundant External Call in OffChainIndexSwap Contract
	Inefficient Loop in _swapTokenToTokens Function
	Redundant Check in Weight Calculation
	Remove Unused Variables and Events

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

