
AtomPad
Smart Contract Security Audit

Prepared by ShellBoxes

April 10th, 2023 - April 13th, 2023

Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client AtomPad

Version 1.0

Classification Public

Scope

Contract Name Contract Address

PresaleInternal 0x97363b2c94552246912209CDf77241D0b1AFfFdB

Re-Audit

Contract Name Contract Address

PresaleInternal 0xe5C2A47545F1f7B2e588B66d9E7cEA33883e01fA

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

https://bscscan.com/address/0x97363b2c94552246912209CDf77241D0b1AFfFdB#code
https://bscscan.com/address/0xe5C2A47545F1f7B2e588B66d9E7cEA33883e01fA#code
mailto:contact@shellboxes.com

Contents

1 Introduction 5

1.1 About AtomPad . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

SHB.1 Rounding Error In TheSwapped TokenAmount 9

SHB.2 Lost PrecisionDue ToADivisionBeforeMultiplication 12

SHB.3 Mismatch In Allocation Calculation Between getUserAllocated And _swap

Functions . 14

SHB.4 TheContract Is Not Guaranteed ToHave Funds For Vesting Payments . . . 16

SHB.5 Potential VestingDisruption In returnWantTokens Function 18

SHB.6 Potential VestingDisruptionWith Setter Functions 19

SHB.7 CentralizationRisk . 21

SHB.8 Unchecked Transfer Calls . 22

SHB.9 Missing Value andAddress Verification . 25

SHB.10 RenounceOwnership Risk . 28

4 Best Practices 30

BP.1 RemoveUnnecessary Checks . 30

BP.2 UsePre-increment (i.e., ++i) in for Loops . 31

BP.3 UseCustomSolidity Errorswith if and revert Instead of require Statements 32

5 Tests 33

6 Conclusion 34

7 Scope Files 35

7.1 Audit . 35

7.2 Re-Audit . 35

3

8 Disclaimer 36

4

1 Introduction
AtomPad engaged ShellBoxes to conduct a security assessment on the AtomPad begin-

ning on April 10th, 2023 and ending April 13th, 2023. In this report, we detail our methodical

approachtoevaluatepotentialsecurity issuesassociatedwiththe implementationofsmart

contracts, by exposing possible semantic discrepancies between the smart contract code

and design document, and by recommending additional ideas to optimize the existing code.

Our findings indicate that the current version of smart contracts can still be enhanced fur-

ther due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About AtomPad

AtomPad is a multichain launchpad, focused on secure and faultless project launches,

which grants token stakers exclusive access to pre-sales of projects which have been

carefully selected for their launchpad. AtomPad is deployed on Binance Smart Chain and

provides a platformwithmultichain support.

Issuer AtomPad

Website https://www.atompad.io

Type Solidity Smart Contract

Documentation AtomPadGitbook docs

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

https://www.atompad.io
https://atompad.gitbook.io/atompad/whitepaper/what-is-atompad

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the AtomPad imple-

mentation. During the first part of our audit, we examine the smart contract source code

and run the codebase via a static code analyzer. The objective here is to find known coding

problems statically and then manually check (reject or confirm) issues highlighted by the

tool. Additionally, we check business logics, system processes, and DeFi-related compo-

nentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include , 2

high-severity, 5medium-severity, 3 low-severity vulnerabilities.

Vulnerabilities Severity Status

SHB.1. Rounding Error In TheSwapped TokenAmount HIGH Fixed

SHB.2. Lost PrecisionDue ToADivisionBeforeMultiplication HIGH Fixed

SHB.3. Mismatch InAllocationCalculationBetweengetUserAl-

locatedAnd _swap Functions

MEDIUM Fixed

SHB.4. TheContract IsNotGuaranteedToHaveFundsForVest-

ing Payments

MEDIUM Acknowledged

SHB.5. PotentialVestingDisruption InreturnWantTokensFunc-

tion

MEDIUM Acknowledged

SHB.6. Potential VestingDisruptionWith Setter Functions MEDIUM Acknowledged

SHB.7. CentralizationRisk MEDIUM Acknowledged

SHB.8. Unchecked Transfer Calls LOW Fixed

7

SHB.9. Missing Value andAddress Verification LOW Partially Fixed

SHB.10. RenounceOwnership Risk LOW Acknowledged

8

3 FindingDetails
SHB.1 Rounding Error In TheSwapped TokenAmount

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The getTokenAmount function calculates the token amount based on the _amount, iDeci-

mals, andwDecimals values. However, there is a rounding error in the returned value that

may cause a loss of tokens for the user.

ThegetTokenAmount functionhasa roundingerror in its calculation,whichcan lead toa

loss of tokens for the user, potentially up to 1018�wDecimals tokenswhenever _amount * rate

is lower than 1018 or _amount * rate% 1018 is different fromzero.

Files Affected:

SHB.1.1: PresaleBase.sol

225 function _swap(
226 address _from,
227 uint256 _amount,
228 uint256 _perc,
229 uint256 _iDecimals
230) private {
231 uint256 _allocation = (hardCap * _perc);
232

233 if (_iDecimals > 6)
234 _allocation = _allocation * (10 ** (_iDecimals - 6));
235 if (_iDecimals < 6) _allocation = _allocation / (10 ** (_iDecimals))

,! ;
236

9

237 uint256 _swapped = swaps[_from];
238

239 uint256 _remaining = _allocation - _swapped;
240

241 require(_remaining >= _amount, "Presale: Insufficient allocation");
242

243 swaps[_from] += _amount;
244

245 claims[_from].reserved += getTokenAmount(_amount);
246

247 swapTotal += _amount;
248

249 emit Swapped(msg.sender, _amount);
250 }

SHB.1.2: PresaleBase.sol

157 function getTokenAmount(uint256 _amount) public view returns (uint256) {
158 uint256 iDecimals = investToken.decimals;
159 uint256 wDecimals = wantToken.decimals;
160

161 if (iDecimals != wDecimals) {
162 _amount = _amount / 10 ** (iDecimals);
163 _amount = _amount * 10 ** (wDecimals);
164 }
165

166 return (_amount * rate) / (10 ** 18);
167 }

Recommendation:

Toaddress this issue, consider requiring the_amount * rate%1018 tobeequal tozerobefore

performing the swap.

10

Updates

The AtomPad team resolved the issue by adding a require statement to prevent rounding

errors.

SHB.1.3: PresaleBase.sol

44 function swap(
45 uint256 _amount
46)
47 external
48 nonReentrant
49 whenNotPaused
50 swapEnabled
51 onProgress
52 returns (bool)
53 {
54 uint256 _perc = allocPercentageOf(msg.sender);
55

56 uint256 _swapTotalAfter = swapTotal + _amount;
57

58 Token memory _investToken = investToken;
59

60 require(_perc > 0, "Presale: No allocation");
61

62 require(
63 _swapTotalAfter <= hardCap * (10 ** (_investToken.decimals)),
64 "Presale: Hard cap reached"
65);
66

67 require(
68 (_amount * rate) % (10 ** 18) == 0,
69 "Presale: Swap not allowed due to potential rounding errors."
70);

11

SHB.2 Lost PrecisionDue ToADivisionBeforeMultiplication

• Severity : HIGH

• Status : Fixed

• Likelihood : 3

• Impact : 2

Description:

The getTokenAmount function performs a division operation before multiplication, which

may result in significant precision loss, leading to inaccuracies in the calculated token

amounts.

In the getTokenAmount function, the division operation is performed prior to multipli-

cation when adjusting the _amount value based on iDecimals and wDecimals. This order-

ing can cause significant precision loss, negatively affecting the accuracy of the calculated

token amounts.

Files Affected:

SHB.2.1: PresaleBase.sol

157 function getTokenAmount(uint256 _amount) public view returns (uint256) {
158 uint256 iDecimals = investToken.decimals;
159 uint256 wDecimals = wantToken.decimals;
160

161 if (iDecimals != wDecimals) {
162 _amount = _amount / 10 ** (iDecimals);
163 _amount = _amount * 10 ** (wDecimals);
164 }
165

166 return (_amount * rate) / (10 ** 18);
167 }

12

Recommendation:

To resolve this issue, consider reordering the operations by performing themultiplication

first, followed by the division. This approachwill help tominimize precision loss andmain-

tain theaccuracyof the tokenamountcalculations. The issuecanberesolvedbycalculating

the _amount using the following code:

SHB.2.2: PresaleBase.sol

_amount = _amount * 10 ** (wDecimals-iDecimals);

Updates

TheAtomPadteamresolved the issuebyperformingthemultiplicationoperationbefore the

division.

SHB.2.3: PresaleBase.sol

125 function getTokenAmount(
126 uint256 investAmount
127) public view returns (uint256) {
128 uint256 iDecimals = investToken.decimals;
129 uint256 wDecimals = wantToken.decimals;
130

131 //rate: 18 decimals
132 uint256 wantAmount = investAmount * rate;
133

134 if (iDecimals < wDecimals) {
135 uint256 decimalDifference = 10 ** (wDecimals - iDecimals);
136 wantAmount = wantAmount * decimalDifference;
137 }
138

139 if (iDecimals > wDecimals) {
140 uint256 decimalDifference = 10 ** (iDecimals - wDecimals);
141 wantAmount = wantAmount / decimalDifference;
142 }
143

144 return wantAmount / (10 ** 18);

13

145 }

SHB.3 Mismatch In Allocation Calculation Between getUser-

AllocatedAnd _swap Functions

• Severity : MEDIUM

• Status : Fixed

• Likelihood : 2

• Impact : 2

Description:

There is an inconsistency in the allocation calculation logic between the getUserAllocated

functionandthe_swapfunction. ThegetUserAllocatedfunctioncalculatesthebasicalloca-

tionusinghardCap* _perc, and then it adjusts theallocationbasedon_iDecimals. However,

in the _swap function, the allocation adjustment logic differs and includes a case for _iDec-

imals < 6.

Files Affected:

SHB.3.1: PresaleBase.sol

194 function getUserAllocated(address _wallet) external view returns (
,! uint256) {

195 uint256 _iDecimals = investToken.decimals;
196 /// retrieve absolute amount of remaining allocation for this;
197 uint256 _perc = allocPercentageOf(_wallet);
198

199 /// retrieve basic allocation
200 uint256 _allocate = (hardCap * _perc);
201

202 if (_iDecimals > 6) _allocate = _allocate * (10 ** (_iDecimals - 6))
,! ;

203

14

204 /// check to avoid < 0 error
205 if (_allocate <= swaps[_wallet]) return 0;
206

207 /// returns remaining allocation
208 return (_allocate - swaps[_wallet]);
209 }

SHB.3.2: PresaleBase.sol

225 function _swap(
226 address _from,
227 uint256 _amount,
228 uint256 _perc,
229 uint256 _iDecimals
230) private {
231 uint256 _allocation = (hardCap * _perc);
232

233 if (_iDecimals > 6)
234 _allocation = _allocation * (10 ** (_iDecimals - 6));
235 if (_iDecimals < 6) _allocation = _allocation / (10 ** (_iDecimals))

,! ;
236

237 uint256 _swapped = swaps[_from];
238

239 uint256 _remaining = _allocation - _swapped;
240

241 require(_remaining >= _amount, "Presale: Insufficient allocation");
242

243 swaps[_from] += _amount;
244

245 claims[_from].reserved += getTokenAmount(_amount);
246

247 swapTotal += _amount;
248

249 emit Swapped(msg.sender, _amount);

15

250 }

Recommendation:

To fix this issue, ensure that both the getUserAllocated and _swap functions have consis-

tent calculation logic for determining the allocation. This will prevent discrepancies in the

allocated amounts and ensure accurate allocation values across the smart contract.

Updates

The AtomPad team resolved the issue by removing the _iDecimals < 6 case in the _swap

function.

SHB.3.3: PresaleBase.sol

192 function _swap(
193 address _from,
194 uint256 _amount,
195 uint256 _perc,
196 uint256 _iDecimals
197) private {
198 uint256 _allocation = (hardCap * _perc);
199

200 if (_iDecimals > 6)
201 _allocation = _allocation * (10 ** (_iDecimals - 6));
202

203 uint256 _swapped = swaps[_from];

SHB.4 The Contract Is Not Guaranteed To Have Funds For

Vesting Payments

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

16

Description:

The smart contract does not guarantee the availability of sufficient funds in thewantToken

to fulfill vested amountswhen users claim their tokens.

Thecurrent implementationof thesmartcontractdoesnotensurethat thereareenough

funds in thewantTokenbalance tocover thevestedamountswhenusersclaimtheir tokens.

Thismayresult inusersbeingunable toreceive their full vested tokenamountsuponclaim-

ing.

Files Affected:

SHB.4.1: PresaleBase.sol

282 /// extra check2 to avoid overspending
283 if (claims[_from].claimed > claims[_from].reserved) {
284 // we are overspending here!!! revert
285 claims[_from].claimed -= _amount;
286 } else {
287 // transfer tokens to the investor
288 IERC20(wantToken.token).safeTransfer(_from, _amount);
289 }

Recommendation:

Toaddressthis issue, consider implementingsafeguardswithin thesmartcontract toguar-

antee that the wantToken balance is sufficient to cover all vested amounts. This may in-

clude checks or restrictions during the token allocation process, ensuring that tokens are

reserved for vesting payouts and preventing any withdrawals that would cause an insuffi-

cient balance for vested claims.

Updates

The AtomPad team acknowledged the risk stating that they support projects even at seed

sale stages, and at that stage projects’ tokens/coins are still under audit process. There-

fore, the process is not automated tomaintain flexibility.

17

SHB.5 Potential Vesting Disruption In returnWantTokens

Function

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The returnWantTokens function allows the contract owner to withdraw wantToken

balances, which may disrupt the vesting process if a portion or all of the vested amounts

arewithdrawn.

The current implementation of the returnWantTokens function permits the contract

owner to withdraw the entire wantToken balance held in the smart contract without

considering the vested amounts reserved for users. This withdrawal can potentially

disrupt the vesting process, leaving users unable to claim their vested tokens.

Files Affected:

SHB.5.1: PresaleBase.sol

319 function returnWantTokens() external onlyOwner {
320 IERC20 _wantToken = IERC20(wantToken.token);
321 //
322 // do some checks
323 require(
324 _wantToken.balanceOf(address(this)) > 0,
325 "Presale: Nothing to return"
326);
327

328 uint256 _remaining = _wantToken.balanceOf(address(this));
329

330 _wantToken.transfer(msg.sender, _remaining);
331

18

332 /// set total supply
333 tokenSupply = 0;
334

335 emit WantTokensReturned(msg.sender, _remaining);
336 }

Recommendation:

To mitigate this issue, consider implementing a mechanism within the returnWantTokens

function to ensure that any withdrawal by the contract owner does not affect the vested

amounts reserved forusers. This canbeachievedby tracking the total vestedbalancesep-

arately and only allowing the contract owner to withdraw amounts in excess of the vested

balance. This approachwill protect the vestedamounts andensureusers cansuccessfully

claim their tokens during the vesting period.

Updates

TheAtomPad teamacknowledged the issuestating that the launchpad is not automated, so

they get permission to returnwant tokens even in the caseswhere projects try to domali-

cious activities to give users tokens, andmoderate settings.

SHB.6 Potential VestingDisruptionWith Setter Functions

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

The setVest, setInvestToken, and setWantToken functions can be called by the contract

ownerwhen a vesting is active, potentially disrupting the vesting process.

Thecurrent implementationof thesetVest, setInvestToken,andsetWantTokenfunctions

allows the contract owner tomodify the vesting parameters, invest token, andwant token,

19

respectively, without any restrictions during an active vesting period. This can result in the

vesting process being disrupted, negatively affecting users participating in the vesting.

Files Affected:

SHB.6.1: PresaleBase.sol

395 function setVest(Vest memory _vest) external onlyOwner {
396 vest = _vest;
397 vest.duration.end =
398 _vest.duration.start +
399 (_vest.durationPerVest * _vest.noOfVests);
400

401 emit VestUpdated(msg.sender, _vest);
402 }

SHB.6.2: PresaleBase.sol

411 function setInvestToken(Token memory _investToken) external onlyOwner {
412 /// check this is a valid address
413 require(
414 _investToken.token != address(0),
415 "Presale: Invalid token address"
416);
417 require(_investToken.decimals != 0, "Presale: Invalid token decimals

,! ");
418

419 investToken = _investToken;
420

421 emit InvestTokenUpdated(msg.sender, _investToken.token);
422 }

SHB.6.3: PresaleBase.sol

424 function setWantToken(Token memory _wantToken) external onlyOwner {
425 /// check this is a valid address
426 require(

20

427 _wantToken.token != address(0),
428 "Presale: Invalid token address"
429);
430 require(_wantToken.decimals != 0, "Presale: Invalid token decimals")

,! ;
431

432 wantToken = _wantToken;
433

434 emit WantTokenUpdated(msg.sender, _wantToken.token);
435 }

Recommendation:

Toprevent this issue,consider implementingcheckswithinthesesetter functionstoensure

that they can only be called when no active vesting is taking place. By adding such checks,

the smart contract can prevent unwanted modifications to the vesting parameters or to-

kens and protect the vesting process for users.

Updates

The AtomPad team acknowledged the issue, stating that this feature is there to allow

projects to issue a new tokenwhen they find a security issue in their token.

SHB.7 CentralizationRisk

• Severity : MEDIUM

• Status : Acknowledged

• Likelihood : 1

• Impact : 3

Description:

Thecontracthasalotofowner-controlledfunctionsthatcanmodifycontractbehavior,such

as changing the rate, hard cap, and vesting schedule. This introduces a level of centraliza-

tion thatmight lead tomisuse or abuse of power.

21

Files Affected:

All functionswith the onlyOwnermodifier.

Recommendation:

To address this issue, it’s important to implement more decentralized and democratic ap-

proaches to decision-making, such as multi-signature control or community governance

models that distribute powermore evenly.

Updates

The AtomPad team acknowledged the risk stating that the launchpad does not claim to be

permissionless and should be trusted by its community. However, the user should be

aware of the risk associated with trusting a third party that has centralized control over

the project.

SHB.8 Unchecked Transfer Calls

• Severity : LOW

• Status : Fixed

• Likelihood : 1

• Impact : 2

Description:

Thesmart contract contains transfercallswhere thereturnvalue isnot checked toconfirm

if the transferwas successful, potentially leading to unexpected behavior or loss of funds.

The current implementation of the smart contract includes transfer calls without veri-

fying thereturnvalue toensure that the transferwassuccessful. Failing tocheckthereturn

valuecanresult inunexpectedbehavior if the transfer fails silentlywithout throwinganex-

ception.

Files Affected:

22

SHB.8.1: PresaleBase.sol

301 function depositTokens(uint256 _amount) external onlyOwner {
302 Token memory _token = wantToken;
303 IERC20 _wantToken = IERC20(_token.token);
304 /// @dev set minimum amount of tokens for this presale
305 require(
306 _amount >= (10 * 10 ** _token.decimals),
307 "Presale: Min amount is 10 tokens"
308);
309 /// transfer x amount of wantToken to presale
310 _wantToken.transferFrom(msg.sender, address(this), _amount);
311

312 /// set total supply
313 tokenSupply += _amount;
314

315 // rate = (tokenSupply / hardCap);
316 emit Deposited(msg.sender, _amount);
317 }

SHB.8.2: PresaleBase.sol

319 function returnWantTokens() external onlyOwner {
320 IERC20 _wantToken = IERC20(wantToken.token);
321 //
322 // do some checks
323 require(
324 _wantToken.balanceOf(address(this)) > 0,
325 "Presale: Nothing to return"
326);
327

328 uint256 _remaining = _wantToken.balanceOf(address(this));
329

330 _wantToken.transfer(msg.sender, _remaining);
331

332 /// set total supply

23

333 tokenSupply = 0;
334

335 emit WantTokensReturned(msg.sender, _remaining);
336 }

SHB.8.3: PresaleBase.sol

338 function forwardInvestTokens() external onlyOwner {
339 IERC20 _investToken = IERC20(investToken.token);
340 //
341 /// do some checks
342 require(
343 _investToken.balanceOf(address(this)) > 0,
344 "Presale: Not enough tokens"
345);
346

347 uint256 _invested = _investToken.balanceOf(address(this));
348

349 _investToken.transfer(msg.sender, _invested);
350

351 emit InvestTokensForwarded(msg.sender, _invested);
352 }

Recommendation:

To address this issue, consider updating the transfer calls to include a check for the return

value. This canbedonebyeitherwrapping the transfer calls ina requirestatementorusing

theSafeERC20 library that ensures the transfer is successful and reverts the transaction if

the transfer fails. Thisapproachwill helpguarantee that transfersarecompletedsuccess-

fully and prevent potential issues resulting fromunchecked transfer calls.

Updates

The AtomPad team resolved the issue by using the SafeERC20 function to perform trans-

fers.

24

SHB.9 Missing Value andAddress Verification

• Severity : LOW

• Status : Partially Fixed

• Likelihood : 1

• Impact : 2

Description:

The constructor and the setters for the PresaleBase contract are missing value and ad-

dressverificationchecks for theirarguments,whichmay lead tounintendedconsequences

or vulnerabilities.

The constructor and the setters for the PresaleBase contract currently do not include

any validation checks for the provided values and addresses of the input arguments, such

as _metadata, _rate, _hardCap, _investToken, _wantToken, _saleDuration, and _vest. As a

result, this lackofvalidationmay lead tounintendedconsequencesorvulnerabilitieswithin

the contract.

Files Affected:

SHB.9.1: PresaleBase.sol

46 constructor(
47 Metadata memory _metadata,
48 uint256 _rate,
49 uint256 _hardCap,
50 Token memory _investToken,
51 Token memory _wantToken,
52 Duration memory _saleDuration,
53 Vest memory _vest
54) {
55 metadata = _metadata;
56 vest = _vest;
57 rate = _rate;
58 hardCap = _hardCap;

25

59 duration = _saleDuration;
60 investToken = _investToken;
61 wantToken = _wantToken;
62 swapOn = true;
63 fcfsPercentage = 100;
64 vest.duration.end =
65 _vest.duration.start +
66 (_vest.durationPerVest * _vest.noOfVests);
67 }

SHB.9.2: PresaleBase.sol

368 function setHardCap(uint256 _cap) external onlyOwner {
369 hardCap = _cap;
370

371 emit HardCapUpdated(msg.sender, _cap);
372 }

SHB.9.3: PresaleBase.sol

374 function setRate(uint256 _rate) external onlyOwner {
375 rate = _rate;
376

377 emit RateUpdated(msg.sender, _rate);
378 }

SHB.9.4: PresaleBase.sol

380 function setVestDuration(Duration memory _vestDuration) external
,! onlyOwner {

381 vest.duration = _vestDuration;
382 vest.duration.end =
383 vest.duration.start +
384 (vest.durationPerVest * vest.noOfVests);
385

386 emit VestDurationUpdated(msg.sender, _vestDuration);
387 }

26

SHB.9.5: PresaleBase.sol

389 function setSaleTime(Duration memory _saleDuration) external onlyOwner {
390 duration = _saleDuration;
391

392 emit SaleTimeUpdated(msg.sender, _saleDuration);
393 }

SHB.9.6: PresaleBase.sol

395 function setVest(Vest memory _vest) external onlyOwner {
396 vest = _vest;
397 vest.duration.end =
398 _vest.duration.start +
399 (_vest.durationPerVest * _vest.noOfVests);
400

401 emit VestUpdated(msg.sender, _vest);
402 }

SHB.9.7: PresaleBase.sol

411 function setInvestToken(Token memory _investToken) external onlyOwner {
412 /// check this is a valid address
413 require(
414 _investToken.token != address(0),
415 "Presale: Invalid token address"
416);
417 require(_investToken.decimals != 0, "Presale: Invalid token decimals

,! ");
418

419 investToken = _investToken;
420

421 emit InvestTokenUpdated(msg.sender, _investToken.token);
422 }

SHB.9.8: PresaleBase.sol

424 function setWantToken(Token memory _wantToken) external onlyOwner {

27

425 /// check this is a valid address
426 require(
427 _wantToken.token != address(0),
428 "Presale: Invalid token address"
429);
430 require(_wantToken.decimals != 0, "Presale: Invalid token decimals")

,! ;
431

432 wantToken = _wantToken;
433

434 emit WantTokenUpdated(msg.sender, _wantToken.token);
435 }

Recommendation:

To address this issue, consider implementing validation checks for these input arguments

within the constructor and the setters. This may include checking for non-zero values for

parameters like _rate and _hardCap, ensuring valid token addresses for _investToken and

_wantToken, and verifying that the duration and vesting parameters are within acceptable

ranges. Adding these validation checks will enhance the robustness and security of the

smart contract.

Updates

The AtomPad team partially resolved the issue by implementing input verification in the

setHardCap, setRate, setVestDuration, setSaleTime functions.

SHB.10 RenounceOwnership Risk

• Severity : LOW

• Status : Acknowledged

• Likelihood : 1

• Impact : 2

28

Description:

The contract inherits from the Ownable pattern, which includes a renounceOwnership

function. This function, if called, can result in the contract having no owner, causing a

Denial of Service (DoS) for the functionswith the onlyOwnermodifier.

In the current implementation, the contract is ownable, and the renounceOwnership

function allows the contract owner to permanently relinquish ownership. If the ownership

is renounced, the contract will not have an owner, and any function with the onlyOwner

modifierwill becomeunreachable. This scenario could lead to aDenial of Service (DoS) on

these functions, as no one would be able to execute them, effectively rendering them

useless.

Files Affected:

SHB.10.1: .sol

16 contract PresaleBase is PresaleStorage, Ownable, Pausable,
,! ReentrancyGuard {

Recommendation:

Tomitigate this risk, consider either removing the renounceOwnership function or replac-

ing itwith a safer alternative, suchasallowingownership transfer to apredefinedaddress,

like a multisig wallet or a timelock contract. This approach will maintain control over the

contract and prevent a potential DoS on the functionswith the onlyOwnermodifier.

Updates

TheAtomPad teamacknowledged theriskstating that therenounceOwnershipwill beused

after the sale ends.

29

4 Best Practices

BP.1 RemoveUnnecessary Checks

Description:

The current implementation of the contract containsmultiple checks that may not be nec-

essary,as theconditionstheyvalidateshouldalwayshold true. Theseadditionalcheckscan

make the codemore complex and harder to read, and they can also increase gas costs for

contract interactions.

By removingunnecessarychecks, youcanmake thesmart contract codemoreconcise,

easier tounderstand,andmoreefficient in termsofgasusage. Thiswillcontributetoamore

maintainable and reliable smart contract.

Files Affected:

The following checks arenot necessary, as if the statement is false, the transactionwill re-

vert due to the overflowprotection.

BP.1.1: PresaleBase.sol

264 require(claims[_from].claimed < _released, "Presale: Nothing to claim");

BP.1.2: PresaleBase.sol

271 require(tokenSupply >= _amount, "Presale: Insufficient token supply");

The if statement here is unnecessary as _amount is equal to _released -

claims[_from].claimed, therefore by incrementing the claimed attribute the if statement

will never be reached and it will always execute the transfer.

BP.1.3: PresaleBase.sol

283 if (claims[_from].claimed > claims[_from].reserved) {
284 // we are overspending here!!! revert
285 claims[_from].claimed -= _amount;
286 } else {
287 // transfer tokens to the investor

30

288 IERC20(wantToken.token).safeTransfer(_from, _amount);
289 }

Status -Not Fixed

BP.2 UsePre-increment (i.e., ++i) in for Loops

Description:

In Solidity, it is generally recommended to use ++i (pre-increment) instead of i++

(post-increment) in for loops. The reason for this preference is that ++i can be slightly

more efficient in terms of gas usage.

When using ++i, the value of i is incremented before it is used in the loop. In contrast,

when using i++, the value of i is incremented after it is used. In some programming lan-

guages, thepost-incrementoperationmaycreatea temporaryvariable tostore theoriginal

value before incrementing it, which can result in additional overhead.

However, it is worth noting that modern Solidity compilers like the one in the solc 0.8.x

series are optimized to handle both ++i and i++ efficiently, so the difference in gas usage

between the twomay be negligible. Nonetheless, it is still a good practice to use ++i in for

loops to ensure optimal gas efficiency, especially whenworkingwith older compilers or in

caseswhere the optimizationsmay not be applied.

Files Affected:

BP.2.1: PresaleBase.sol

183 for (uint256 i = 0; i < _vest.noOfVests; i++) {
184 if (_time > _startVest + (i * (_vest.durationPerVest)))
185 _perc = (_vest.initialVestPercentage +
186 (i * (_vest.percPerVest)));
187 }

31

Status -Not Fixed

BP.3 Use Custom Solidity Errors with if and revert

Instead of require Statements

Description:

In the current implementation, the contract uses require statements for various validation

checks. While this approach works, using custom Solidity errors with if and revert state-

ments can providemore informative and specific errormessages. Thismakes it easier for

developers and users to understand the reasons behind failed transactions, and it allows

for better error handling.

To implement thisbestpractice, considerreplacing theexistingrequirestatementswith

if and revert statements that include custom error messages. Define custom error types

using the error keyword, and provide descriptive names and parameters to convey the na-

tureof theerror. Then, use thesecustomerror types incombinationwith revert statements

in your validation checks.

Status -Not Fixed

32

5 Tests
Because the project lacks unit, integration, and end-to-end tests, we recommend estab-

lishing numerous testing methods covering multiple scenarios for all features in order to

ensure the correctness of the smart contracts.

33

6 Conclusion
In this audit, weexamined the design and implementation ofAtomPadcontract and discov-

ered several issues of varying severity. AtomPad team addressed 4 issues raised in the

initial report and implemented the necessary fixes, while classifying the rest as a riskwith

low-probability of occurrence. Shellboxes’ auditors advised AtomPad Team to maintain a

high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

34

7 Scope Files

7.1 Audit

Files MD5Hash

PresaleBase.sol 6124a3085b0a95d43245e4793bbeb292

PresaleInternal.sol de0910092bf79a732501ec8023e374e5

PresaleStorage.sol 892def72c5abdea2e3df20379e1fc93a

7.2 Re-Audit

Files MD5Hash

PresaleBase.sol 4e454fee784d3bf473b49fd4669d40cc

PresaleInternal.sol de0910092bf79a732501ec8023e374e5

PresaleStorage.sol 892def72c5abdea2e3df20379e1fc93a

35

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

36

For a Contract Audit, contact us at contact@shellboxes.com

37

mailto:contact@shellboxes.com

	Introduction
	About AtomPad
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	Rounding Error In The Swapped Token Amount
	Lost Precision Due To A Division Before Multiplication
	Mismatch In Allocation Calculation Between getUserAllocated And _swap Functions
	The Contract Is Not Guaranteed To Have Funds For Vesting Payments
	Potential Vesting Disruption In returnWantTokens Function
	Potential Vesting Disruption With Setter Functions
	Centralization Risk
	Unchecked Transfer Calls
	Missing Value and Address Verification
	Renounce Ownership Risk

	Best Practices
	Remove Unnecessary Checks
	Use Pre-increment (i.e., ++i) in for Loops
	Use Custom Solidity Errors with if and revert Instead of require Statements

	Tests
	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

